BAB-GSL: Using Bayesian influence with attention mechanism to optimize graph structure in basic views

计算机科学 机制(生物学) 图形 贝叶斯概率 人工智能 贝叶斯网络 机器学习 理论计算机科学 哲学 认识论
作者
Zhaowei Liu,Miaosi Xie,Yongchao Song,Lihong Wang,Yunhong Lu,Haiyang Wang,Xiaolong Chen
出处
期刊:Neural Networks [Elsevier BV]
卷期号:: 106785-106785
标识
DOI:10.1016/j.neunet.2024.106785
摘要

In recent years, Graph Neural Networks (GNNs) have garnered significant attention, with a notable focus on Graph Structure Learning (GSL), a branch dedicated to optimizing graph structures to enhance network training performance. Current GSL methods primarily involve constructing optimized graph representations by analyzing one or more initial graph sources to improve performance in subsequent application tasks. Despite these advancements, achieving high-quality graphs that accurately and robustly reflect node relationships remains challenging. This paper introduces a novel approach, termed BAB-GSL, designed to approximate an ideal graph structure through a systematic process. Specifically, two basic views are extracted from the original graph and utilized as inputs for the model, where the preliminary optimized view is generated through the view fusion module. The Attention mechanism is then applied to the optimized view to improve nodes' connectivity and expressiveness. Subsequently, the trained view is re-structured using a Bayesian optimizer to produce the final graph structure. Extensive experiments were conducted across multiple datasets, both in undisturbed and attacked scenarios, to thoroughly evaluate the proposed method, demonstrating the effectiveness and robustness of the BAB-GSL approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zojoy完成签到,获得积分10
1秒前
打工牛牛完成签到,获得积分10
1秒前
SMOONNY完成签到,获得积分10
1秒前
2秒前
天天扫大街完成签到,获得积分10
4秒前
4秒前
现代的南风完成签到 ,获得积分10
5秒前
6秒前
深情安青应助222采纳,获得10
6秒前
7秒前
HHYYAA发布了新的文献求助10
10秒前
万能图书馆应助小颖子采纳,获得10
11秒前
12秒前
科研通AI2S应助KK采纳,获得30
13秒前
善学以致用应助HHYYAA采纳,获得10
15秒前
CipherSage应助夕阳与茶采纳,获得10
15秒前
清秀帆布鞋完成签到,获得积分10
16秒前
美丽的凌蝶完成签到,获得积分10
18秒前
shanshan完成签到,获得积分20
18秒前
科研通AI5应助跳跃尔琴采纳,获得10
19秒前
19秒前
20秒前
iShine发布了新的文献求助100
22秒前
中工完成签到 ,获得积分10
24秒前
Jackie发布了新的文献求助10
25秒前
26秒前
26秒前
26秒前
29秒前
Atlantic发布了新的文献求助10
31秒前
虚幻天空发布了新的文献求助10
32秒前
xxh完成签到,获得积分10
34秒前
35秒前
贪玩钢铁侠完成签到,获得积分10
37秒前
38秒前
chiaoyin999应助小梦采纳,获得10
38秒前
38秒前
陆吉完成签到,获得积分10
40秒前
汉堡包应助sdl采纳,获得10
40秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841873
求助须知:如何正确求助?哪些是违规求助? 3383895
关于积分的说明 10531786
捐赠科研通 3104108
什么是DOI,文献DOI怎么找? 1709514
邀请新用户注册赠送积分活动 823302
科研通“疑难数据库(出版商)”最低求助积分说明 773878