亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph based embedding learning of trajectory data for transportation mode recognition by fusing sequence and dependency relations

弹道 计算机科学 图形 人工智能 数据挖掘 特征(语言学) 序列(生物学) 推论 机器学习 理论计算机科学 语言学 哲学 物理 天文 生物 遗传学
作者
Wenhao Yu,Guanwen Wang
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:37 (12): 2514-2537 被引量:9
标识
DOI:10.1080/13658816.2023.2268668
摘要

AbstractAs an important task in spatial data mining, trajectory transportation mode recognition can reflect various individual behaviors and traveling patterns in urban space. As trajectory is essentially a sequence, many scholars use the sequence inference models to mine the information in trajectory data. However, such methods often ignored the spatial correlation between trajectory points and implemented the evaluation based only on representative feature statistics selected in the trajectory data preprocessing stage, thus have difficulties in acquiring high-order traveling pattern features. In this study, we propose a novel ensemble recognition method for representing trajectory data with the graph structure based on sequence and dependency relations. This method integrates the sequence of trajectory points and the correlation between characteristic points of a travel path into a fused graph convolutional network to obtain semantic feature information at multiple levels. We validate our proposed method with experiments on the trajectory benchmark dataset from the Microsoft GeoLife project. The results demonstrated that our proposed graph network outperforms other baseline methods in the transportation mode recognition task of trajectories. This method can help to discover the movement patterns of urban residents, and further provide effective assistance for the management of cities.Keywords: Trajectory datagraph convolution networktransportation mode recognitionfeature extractionfeature fusion AcknowledgmentsThe authors are grateful to the associate editor, Urska Demsar, and the anonymous referees for their valuable comments and suggestions. The project was supported by the National Natural Science Foundation of China (42371446 and 42071442) and by the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No.CUG170640). This research was also supported by Meituan.Author contributionsWenhao Yu: Conceptualization, methodology, formal analysis, validation, writing—original draft preparation, writing—review and editing, supervision, project administration, funding acquisition; Guanwen Wang: Methodology, validation, formal analysis, investigation, writing—original draft preparation, writing—review and editing, visualization. All authors have read and agreed to the published version of the manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Data and codes availability statementThe data and codes that support the findings of this study are available with a DOI at (https://doi.org/10.6084/m9.figshare.21608310).Additional informationNotes on contributorsWenhao YuWenhao Yu received the B.S. and Ph.D. degrees in Geoinformatics from the Wuhan University, Wuhan, China, in 2010 and 2015, respectively. He is a professor at China University of Geosciences, Wuhan, China (CUG). His research interests include spatial data mining, map generalization, and deep learning.Guanwen WangGuanwen Wang is a master student in the School of Geography and Information Engineering, China University of Geosciences, Wuhan, China (CUG). Her research interests include deep learning and spatial data mining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助闪闪翼采纳,获得10
2秒前
彩虹儿完成签到,获得积分0
4秒前
Yoanna应助科研通管家采纳,获得10
7秒前
Yini应助ghost采纳,获得20
21秒前
22秒前
阿斯戳发布了新的文献求助10
29秒前
慕青应助阿斯戳采纳,获得10
39秒前
77完成签到 ,获得积分10
1分钟前
2分钟前
小燕子完成签到 ,获得积分10
2分钟前
勤恳依霜发布了新的文献求助10
2分钟前
老阎应助勤恳依霜采纳,获得30
2分钟前
共享精神应助勤恳依霜采纳,获得10
2分钟前
kmzzy完成签到,获得积分10
3分钟前
kuoping完成签到,获得积分0
3分钟前
3分钟前
闪闪翼发布了新的文献求助10
3分钟前
3分钟前
wwe完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
西安浴日光能赵炜完成签到,获得积分10
4分钟前
Yoanna应助科研通管家采纳,获得20
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
嘻嘻完成签到,获得积分10
5分钟前
5分钟前
6分钟前
李爱国应助科研通管家采纳,获得10
6分钟前
慕青应助SiboN采纳,获得10
7分钟前
drirshad完成签到,获得积分10
7分钟前
numagok完成签到,获得积分10
8分钟前
ceeray23发布了新的文献求助10
9分钟前
陶醉的蜜蜂完成签到,获得积分10
9分钟前
vitamin完成签到 ,获得积分10
9分钟前
Yini应助Omni采纳,获得10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957939
求助须知:如何正确求助?哪些是违规求助? 4219149
关于积分的说明 13133252
捐赠科研通 4002241
什么是DOI,文献DOI怎么找? 2190252
邀请新用户注册赠送积分活动 1205006
关于科研通互助平台的介绍 1116625