Structure-based pharmacophore modeling 1. Automated random pharmacophore model generation

药效团 虚拟筛选 G蛋白偶联受体 计算生物学 药物发现 计算机科学 化学 立体化学 生物 受体 生物化学
作者
Gregory L. Szwabowski,Jon C. Cole,Daniel L. Baker,Abby L. Parrill
出处
期刊:Journal of Molecular Graphics & Modelling [Elsevier BV]
卷期号:121: 108429-108429 被引量:1
标识
DOI:10.1016/j.jmgm.2023.108429
摘要

Pharmacophores are three-dimensional arrangements of molecular features required for biological activity that are often used in virtual screening efforts to prioritize ligands for experimental testing. G protein-coupled receptors (GPCR) are integral membrane proteins of considerable interest as targets for ligand discovery and drug development. Ligand-based pharmacophore models can be constructed to identify structural commonalities between known bioactive ligands for targets including GPCR. However, structure-based pharmacophores (which only require an experimentally determined or modeled structure for a protein target) have gained more attention to aid in virtual screening efforts as the number of publicly available experimentally determined GPCR structures have increased (140 unique GPCR represented as of October 24, 2022). Thus, the goal of this study was to develop a method of structure-based pharmacophore model generation applicable to ligand discovery for GPCR that have few known ligands. Pharmacophore models were generated within the active sites of 8 class A GPCR crystal structures via automated annotation of 5 randomly selected functional group fragments to sample diverse combinations of pharmacophore features. Each of the 5000 generated pharmacophores was then used to search a database containing active and decoy/inactive compounds for 30 class A GPCR and scored using enrichment factor and goodness-of-hit metrics to assess performance. Application of this method to the set of 8 class A GPCR produced pharmacophore models possessing the theoretical maximum enrichment factor value in both resolved structures (8 of 8 cases) and homology models (7 of 8 cases), indicating that generated pharmacophore models can prove useful in the context of virtual screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我思故我在完成签到,获得积分0
4秒前
Liu完成签到 ,获得积分10
4秒前
追逐的疯完成签到,获得积分10
5秒前
5秒前
hanna完成签到 ,获得积分10
6秒前
keyango完成签到 ,获得积分10
7秒前
7秒前
9秒前
武雨寒发布了新的文献求助10
11秒前
doctorsu发布了新的文献求助10
11秒前
光亮青柏完成签到 ,获得积分10
12秒前
听汐完成签到 ,获得积分10
13秒前
melody完成签到,获得积分10
14秒前
CipherSage应助蜜蜂威士忌采纳,获得10
14秒前
xuxingxing发布了新的文献求助10
15秒前
巨大的小侠完成签到,获得积分10
17秒前
qianchimo完成签到 ,获得积分10
17秒前
上官若男应助快乐的鱼采纳,获得10
17秒前
暴躁汉堡完成签到,获得积分10
18秒前
新斯的明的明完成签到 ,获得积分10
19秒前
20秒前
22秒前
雷小牛完成签到 ,获得积分10
26秒前
27秒前
领导范儿应助嗯嗯采纳,获得10
28秒前
付冀川完成签到,获得积分10
29秒前
Georges-09完成签到,获得积分10
32秒前
晨心完成签到,获得积分10
32秒前
waa完成签到,获得积分10
34秒前
35秒前
一颗西柚完成签到 ,获得积分10
35秒前
脑洞疼应助Andy采纳,获得10
35秒前
华仔应助鱼香肉丝采纳,获得10
37秒前
MeiyanZou完成签到 ,获得积分10
37秒前
依楼完成签到,获得积分10
37秒前
科研通AI5应助高挑的书雪采纳,获得30
39秒前
40秒前
依楼发布了新的文献求助10
41秒前
43秒前
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777749
求助须知:如何正确求助?哪些是违规求助? 3323285
关于积分的说明 10213393
捐赠科研通 3038542
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798152
科研通“疑难数据库(出版商)”最低求助积分说明 758275