Hotel room personalization via ontology and rule-based reasoning

个性化 计算机科学 本体论 背景(考古学) 万维网 小贩 多样性(控制论) 推论 数据科学 业务 人工智能 营销 生物 认识论 哲学 古生物学
作者
Ronald Ojino,Luisa Mich,Nerey H. Mvungi
出处
期刊:International Journal of Web Information Systems [Emerald (MCB UP)]
卷期号:18 (5/6): 369-387 被引量:6
标识
DOI:10.1108/ijwis-02-2022-0045
摘要

Purpose The increasingly competitive hotel industry and emerging customer trends where guests are more discerning and want a personalized experience has led to the need of innovative applications. Personalization is much more important for hotels, especially now in the post-COVID lockdown era, as it challenges their business model. However, personalization is difficult to design and realize due to the variety of factors and requirements to be considered. Differences are both in the offer (hotels and their rooms) and demand (customers’ profiles and needs) in the accommodation domain. As for the implementation, critical issues are in hardware-dependent and vendor-specific Internet of Things devices which are difficult to program. Additionally, there is complexity in realizing applications that consider varying customer needs and context via existing personalization options. This paper aims to propose an ontological framework to enhance the capabilities of hotels in offering their accommodation and personalization options based on a guest’s characteristics, activities and needs. Design/methodology/approach A research approach combining both quantitative and qualitative methods was used to develop a hotel room personalization framework. The core of the framework is a hotel room ontology (HoROnt) that supports well-defined machine-readable descriptions of hotel rooms and guest profiles. Hotel guest profiles are modeled via logical rules into an inference engine exploiting reasoning functionalities used to recommend hotel room services and features. Findings Both the ontology and the inference engine module have been validated with promising results which demonstrate high accuracy. The framework leverages user characteristics, and dynamic contextual data to satisfy guests’ needs for personalized service provision. The semantic rules provide recommendations to both new and returning guests, thereby also addressing the cold start issue. Originality/value This paper extends HoROnt in two ways, to be able to add: instances of the concepts (room characteristics and services; guest profiles), i.e. to create a knowledge base, and logical rules into an inference engine, to model guests’ profiles and to be used to offer personalized hotel rooms. Thanks to the standards adopted to implement personalization, this framework can be integrated into existing reservation systems. It can also be adapted for any type of accommodation since it is broad-based and personalizes varying features and amenities in the rooms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术嫪毐发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
天涯赤子发布了新的文献求助10
1秒前
1秒前
Vintor完成签到,获得积分10
1秒前
传奇3应助yang采纳,获得10
2秒前
青年才俊发布了新的文献求助10
2秒前
乌压压完成签到,获得积分20
2秒前
2秒前
3秒前
云云完成签到 ,获得积分10
3秒前
松松宝宝发布了新的文献求助10
3秒前
3秒前
sss发布了新的文献求助10
4秒前
简单白梦完成签到,获得积分10
4秒前
脑洞疼应助酷酷的晓旋采纳,获得10
4秒前
陈_Ccc完成签到 ,获得积分10
5秒前
曹梦梦发布了新的文献求助20
5秒前
乌压压发布了新的文献求助10
5秒前
李健应助yy采纳,获得10
6秒前
花盈满袖完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
王舒心应助Yan要高飞采纳,获得10
7秒前
方法完成签到,获得积分10
8秒前
sh完成签到,获得积分10
9秒前
JY关闭了JY文献求助
10秒前
chenghuan完成签到,获得积分20
10秒前
Joshua完成签到,获得积分10
10秒前
10秒前
醉熏的含烟完成签到,获得积分10
11秒前
11秒前
hewd3发布了新的文献求助10
11秒前
miaomiao完成签到,获得积分10
11秒前
科研通AI2S应助整齐的茗茗采纳,获得10
11秒前
11秒前
科目三应助yang采纳,获得10
12秒前
Dan完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630828
求助须知:如何正确求助?哪些是违规求助? 4723716
关于积分的说明 14975757
捐赠科研通 4789049
什么是DOI,文献DOI怎么找? 2557396
邀请新用户注册赠送积分活动 1518110
关于科研通互助平台的介绍 1478700