Radiomic Model Associated with Tumor Microenvironment Predicts Immunotherapy Response and Prognosis in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma

鼻咽癌 一致性 免疫疗法 医学 肿瘤科 免疫组织化学 相关性 可解释性 内科学 人工智能 放射治疗 癌症 计算机科学 数学 几何学
作者
Jie Sun,Xuewei Wu,Xiao Zhang,Weiyuan Huang,Xi Zhong,Xueyan Li,Kaiming Xue,Shuyi Liu,Xianjie Chen,Wenzhu Li,Xin Liu,Hui Shen,Jingjing You,Wenle He,Zhe Jin,Yu Lijuan,Yuange Li,Shuixing Zhang,Bin Zhang
出处
期刊:Research [AAAS00]
卷期号:8: 0749-0749 被引量:1
标识
DOI:10.34133/research.0749
摘要

Background: No robust biomarkers have been identified to predict the efficacy of programmed cell death protein 1 (PD-1) inhibitors in patients with locoregionally advanced nasopharyngeal carcinoma (LANPC). We aimed to develop radiomic models using pre-immunotherapy MRI to predict the response to PD-1 inhibitors and the patient prognosis. Methods: This study included 246 LANPC patients (training cohort, n = 117; external test cohort, n = 129) from 10 centers. The best-performing machine learning classifier was employed to create the radiomic models. A combined model was constructed by integrating clinical and radiomic data. A radiomic interpretability study was performed with whole slide images (WSIs) stained with hematoxylin and eosin (H&E) and immunohistochemistry (IHC). A total of 150 patient-level nuclear morphological features (NMFs) and 12 cell spatial distribution features (CSDFs) were extracted from WSIs. The correlation between the radiomic and pathological features was assessed using Spearman correlation analysis. Results: The radiomic model outperformed the clinical and combined models in predicting treatment response (area under the curve: 0.760 vs. 0.559 vs. 0.652). For overall survival estimation, the combined model performed comparably to the radiomic model but outperformed the clinical model (concordance index: 0.858 vs. 0.812 vs. 0.664). Six treatment response-related radiomic features correlated with 50 H&E-derived (146 pairs, | r |= 0.31 to 0.46) and 2 to 26 IHC-derived NMF, particularly for CD45RO (69 pairs, | r |= 0.31 to 0.48), CD8 (84, | r |= 0.30 to 0.59), PD-L1 (73, | r |= 0.32 to 0.48), and CD163 (53, | r | = 0.32 to 0.59). Eight prognostic radiomic features correlated with 11 H&E-derived (16 pairs, | r |= 0.48 to 0.61) and 2 to 31 IHC-derived NMF, particularly for PD-L1 (80 pairs, | r |= 0.44 to 0.64), CD45RO (65, | r |= 0.42 to 0.67), CD19 (35, | r |= 0.44 to 0.58), CD66b (61, | r | = 0.42 to 0.67), and FOXP3 (21, | r | = 0.41 to 0.71). In contrast, fewer CSDFs exhibited correlations with specific radiomic features. Conclusion: The radiomic model and combined model are feasible in predicting immunotherapy response and outcomes in LANPC patients. The radiology–pathology correlation suggests a potential biological basis for the predictive models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
a.........发布了新的文献求助10
2秒前
美味又健康完成签到 ,获得积分10
2秒前
她说肚子是吃大的i完成签到,获得积分10
2秒前
3秒前
wan发布了新的文献求助10
3秒前
阿士大夫完成签到,获得积分10
4秒前
Mt发布了新的文献求助10
4秒前
4秒前
5秒前
麦冬粑粑完成签到,获得积分10
5秒前
卓卓卓卓发布了新的文献求助40
5秒前
SciGPT应助hml采纳,获得10
5秒前
6秒前
7秒前
7秒前
小二郎应助煎饼狗子采纳,获得10
7秒前
金克斯完成签到,获得积分10
7秒前
小卡拉米发布了新的文献求助10
7秒前
7秒前
melone完成签到,获得积分10
7秒前
跳跃元正发布了新的文献求助10
7秒前
HJJHJH发布了新的文献求助10
8秒前
阿士大夫发布了新的文献求助10
8秒前
sciiii发布了新的文献求助30
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
少年应助金克斯采纳,获得10
10秒前
kdfdds发布了新的文献求助10
11秒前
小糊涂发布了新的文献求助10
11秒前
11秒前
11秒前
李凯完成签到,获得积分20
11秒前
惜涵发布了新的文献求助10
12秒前
1237发布了新的文献求助30
12秒前
浮游应助阿十采纳,获得10
12秒前
平生欢发布了新的文献求助10
12秒前
天真小蚂蚁完成签到,获得积分10
13秒前
坚定芷烟完成签到,获得积分10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233