Regional, but not brain-wide, graph theoretic measures are robustly and reproducibly linked to general cognitive ability

连接体 连接组学 单变量 认知 图论 图形 功率图分析 心理学 动物认知 认知心理学 计算机科学 静息状态功能磁共振成像 图形模型 稳健性(进化) 人工智能 多元统计 机器学习 理论计算机科学 神经科学 功能连接 数学 生物 组合数学 基因 生物化学
作者
M. Fiona Molloy,Aman Taxali,Mike Angstadt,Tristan Greathouse,Katherine Toda-Thorne,Katherine McCurry,Alexander Weigard,Omid Kardan,Lily Burchell,Marcin Dziubiński,Jason Choi,Melanie Vandersluis,Cleanthis Michael,Mary M. Heitzeg,Chandra Sripada
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:35 (4) 被引量:1
标识
DOI:10.1093/cercor/bhaf074
摘要

Abstract General cognitive ability (GCA), also called “general intelligence,” is thought to depend on network properties of the brain, which can be quantified through graph theoretic measures such as small worldness and module degree. An extensive set of studies examined links between GCA and graphical properties of resting state connectomes. However, these studies often involved small samples, applied just a few graph theory measures in each study, and yielded inconsistent results, making it challenging to identify the architectural underpinnings of GCA. Here, we address these limitations by systematically investigating univariate and multivariate relationships between GCA and 17 whole-brain and node-level graph theory measures in individuals from the Adolescent Brain Cognitive Development Study (n = 5937). We demonstrate that whole-brain graph theory measures, including small worldness and global efficiency, fail to exhibit meaningful relationships with GCA. In contrast, multiple node-level graphical measures, especially module degree (within-network connectivity), exhibit strong associations with GCA. We establish the robustness of these results by replicating them in a second large sample, the Human Connectome Project (n = 847), and across a variety of modeling choices. This study provides the most comprehensive and definitive account to date of complex interrelationships between GCA and graphical properties of the brain’s intrinsic functional architecture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fff发布了新的文献求助10
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
oO完成签到 ,获得积分10
2秒前
炙热的雪糕完成签到,获得积分10
2秒前
Return发布了新的文献求助10
3秒前
李健应助开心麦片采纳,获得10
3秒前
科研通AI6应助负责戎采纳,获得10
4秒前
小马甲应助安彦超采纳,获得10
4秒前
5秒前
6秒前
tuanheqi发布了新的文献求助100
6秒前
共享精神应助百招采纳,获得10
7秒前
科研通AI6应助rose采纳,获得10
7秒前
爆米花应助LAN采纳,获得10
8秒前
ceeray23应助Crane采纳,获得10
9秒前
10秒前
BowieHuang应助Gotyababy采纳,获得10
10秒前
菜鸟完成签到,获得积分20
11秒前
舒适香露发布了新的文献求助10
11秒前
12秒前
在水一方应助llf采纳,获得10
12秒前
cling发布了新的文献求助10
12秒前
科研通AI6应助Diego采纳,获得10
13秒前
小辞芙芙完成签到,获得积分10
14秒前
15秒前
Ava应助有福姐采纳,获得30
15秒前
15秒前
叶涛完成签到 ,获得积分10
16秒前
自信尔竹发布了新的文献求助10
16秒前
牧云醉风发布了新的文献求助10
16秒前
Crane完成签到,获得积分10
16秒前
Gotyababy完成签到,获得积分10
16秒前
17秒前
蓝色小萝卜完成签到,获得积分10
18秒前
19秒前
wj完成签到 ,获得积分10
21秒前
林珍发布了新的文献求助10
21秒前
22秒前
cc发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649984
求助须知:如何正确求助?哪些是违规求助? 4779520
关于积分的说明 15050791
捐赠科研通 4808902
什么是DOI,文献DOI怎么找? 2571905
邀请新用户注册赠送积分活动 1528157
关于科研通互助平台的介绍 1486950