A bearing RUL prediction approach of vibration fault signal denoise modeling with Gate-CNN and Conv-Transformer encoder

编码器 振动 变压器 方位(导航) 计算机科学 旋转编码器 断层(地质) 电子工程 声学 电气工程 人工智能 工程类 电压 物理 地质学 地震学 操作系统
作者
Peng Huang,Yuanjin Wang,Yingkui Gu,Guangqi Qiu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (6): 066104-066104 被引量:3
标识
DOI:10.1088/1361-6501/ad2cd9
摘要

Abstract The operating conditions of rolling bearings are complex and variable, and their vibration monitoring signals are filled with strong noise interference, resulting in a low accuracy in remaining useful life (RUL) prediction. For this issue, this paper proposes a denoising method with vibration fault signals modeling, and a novel RUL prediction method with Gate-convolutional neural networks (CNN) and Conv-Transformer encoder. Firstly, the theoretical fault signal is obtained through the vibration fault signal model, and the quality of the extracted features is improved by the wavelet threshold denoising algorithm in the process of feature extraction and selection. Moreover, the CNN is combined with the gating mechanism to construct a feature extractor with the feature evaluation function, and the convolution layers are introduced into the transformer to expand the encoder’s ability to explore local information in temporal data. By using fixed-time step temporal features as the input to the prediction module and minimizing the Huber function as the optimization objective, the relationship between temporal features and RUL is obtained. The comparison with the existing state-of-the-art RUL methods illustrates that the combination of gate control and convolutional structure proposed in this paper can not only reduce the prediction error of the model but also improve its generalization ability and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fox完成签到,获得积分0
刚刚
刚刚
潇洒的不可完成签到,获得积分10
1秒前
zz完成签到,获得积分10
1秒前
2233完成签到,获得积分10
1秒前
啦啦啦发布了新的文献求助10
1秒前
思源应助傢誠采纳,获得30
2秒前
JILIGULU完成签到,获得积分10
2秒前
2秒前
3秒前
弱水三千完成签到,获得积分10
3秒前
敏感凝竹完成签到,获得积分10
3秒前
emma完成签到,获得积分10
3秒前
4秒前
喜静完成签到,获得积分10
4秒前
4秒前
iNk应助speedness采纳,获得10
4秒前
4秒前
WalkToSky完成签到,获得积分10
5秒前
寒冷尔蝶发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
dmoney发布了新的文献求助10
7秒前
称心的问薇完成签到,获得积分10
7秒前
mqz发布了新的文献求助10
7秒前
顺顺完成签到,获得积分10
7秒前
小杨完成签到,获得积分10
7秒前
欲望被鬼完成签到,获得积分10
7秒前
小谭完成签到 ,获得积分10
7秒前
Faded完成签到 ,获得积分10
8秒前
Tammy完成签到 ,获得积分10
8秒前
emma发布了新的文献求助10
8秒前
BMH完成签到,获得积分10
8秒前
重要手机发布了新的文献求助10
9秒前
gro_ele完成签到,获得积分10
9秒前
lx发布了新的文献求助10
9秒前
11发布了新的文献求助10
10秒前
星海发布了新的文献求助10
10秒前
ruuuu完成签到,获得积分10
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Selenium in ruminant nutrition and health 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837799
求助须知:如何正确求助?哪些是违规求助? 3379844
关于积分的说明 10511402
捐赠科研通 3099477
什么是DOI,文献DOI怎么找? 1707127
邀请新用户注册赠送积分活动 821432
科研通“疑难数据库(出版商)”最低求助积分说明 772617