Joint Cost Learning and Payload Allocation With Image-Wise Attention for Batch Steganography

有效载荷(计算) 计算机科学 隐写术 特征(语言学) 特征提取 卷积神经网络 人工智能 嵌入 模式识别(心理学) 机器学习 计算机网络 语言学 哲学 网络数据包
作者
Weixuan Tang,Zhili Zhou,Bin Li,Kim–Kwang Raymond Choo,Jiwu Huang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 2826-2839 被引量:1
标识
DOI:10.1109/tifs.2024.3354411
摘要

In recent years, although cost learning methods have made great progress in single-image steganography, its development in batch steganography is relatively slower, which is a more practical communication scenario in the real world. The difficulties are capturing the full view of the image batch and building connections between cost learning and payload allocation by neural networks. To address the issues, this paper proposes a cost learning framework for batch steganography called JoCoP (Joint Cost Learning and Payload Allocation), wherein the policy network is designed to learn the optimal embedding policies for a batch of images via the collaboration between a cost learning module and a payload allocation module. In specific layers of the policy network, in the cost learning module, the intermediate feature maps of embedding costs are extracted for different images independently, which are sent to the payload allocation module. In the payload allocation module, to implement implicit payload allocation, the feature maps corresponding to different images within the same batch are adjusted by an image-wise attention mechanism. Afterwards, these adjusted feature maps are returned to the cost learning module for subsequent feature extraction in the next layer. Owing to the collaboration between the two modules and the batch-level receptive field in the image-wise attention mechanism, the embedding costs and the payload allocation can be jointly optimized in an end-to-end manner. Experimental results show that the proposed JoCoP outperforms existing methods against both single-image steganalyzers and pooled steganalyzers based on feature extraction and convolutional neural networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意语风发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
lory发布了新的文献求助10
2秒前
2秒前
2秒前
李健应助快乐的紫菜采纳,获得10
2秒前
小马甲应助deepseek采纳,获得10
2秒前
3秒前
完美世界应助ll采纳,获得10
3秒前
Rason完成签到,获得积分10
4秒前
4秒前
lll发布了新的文献求助10
4秒前
4秒前
guo发布了新的文献求助10
5秒前
Mic应助拉布拉卡采纳,获得10
5秒前
Yanhai发布了新的文献求助10
5秒前
5秒前
烟花应助忘崽子小拳头采纳,获得10
6秒前
小陈1122发布了新的文献求助10
6秒前
6秒前
YUAN完成签到,获得积分10
6秒前
lyc发布了新的文献求助10
6秒前
澄碧星林完成签到,获得积分10
6秒前
xc41992完成签到,获得积分10
6秒前
lcls完成签到,获得积分10
6秒前
松鼠15111完成签到,获得积分10
6秒前
烟花应助魔幻的又亦采纳,获得10
7秒前
T1aNer299发布了新的文献求助10
7秒前
风趣亦巧完成签到 ,获得积分10
8秒前
8秒前
姚静怡完成签到,获得积分10
8秒前
柔弱水香完成签到 ,获得积分10
8秒前
8秒前
xiao完成签到,获得积分10
9秒前
坚持是一种品格完成签到,获得积分10
9秒前
喵喵喵完成签到,获得积分10
9秒前
lc完成签到,获得积分10
9秒前
qiny完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512879
求助须知:如何正确求助?哪些是违规求助? 4607280
关于积分的说明 14504084
捐赠科研通 4542710
什么是DOI,文献DOI怎么找? 2489172
邀请新用户注册赠送积分活动 1471230
关于科研通互助平台的介绍 1443251