Automatic curtain wall frame detection based on deep learning and cross-modal feature fusion

帧(网络) 情态动词 幕墙 人工智能 融合 特征(语言学) 计算机科学 深度学习 工程类 计算机视觉 结构工程 材料科学 电信 语言学 哲学 高分子化学
作者
Decheng Wu,Yu Li,Rui Li,Longqi Cheng,Jingyuan Zhao,Mingfu Zhao,Chul Hee Lee
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:160: 105305-105305 被引量:2
标识
DOI:10.1016/j.autcon.2024.105305
摘要

The curtain wall construction industry is one of the most popular industries with excellent development prospects. On the other hand, curtain wall installation is mainly performed manually, which has the disadvantages of great danger and low efficiency. Therefore, this study designed a method for curtain wall frame detection based on computer vision to assist curtain wall installation in completing positioning and installation tasks. This paper presents a deep learning method with two input streams and cross-modal feature fusion based on the encoder-decoder structure (CWFD-net) to detect curtain wall frames accurately. In particular, the high-level semantic features of the RGB and Depth streams in the encoder stage are fused to generate RGB-D features to achieve preliminary cross-modal feature fusion, which makes input information include more curtain wall frame features. The coordinate attention mechanism enables the network to focus more on the position information of the curtain wall frame. A cross-stage feature fusion strategy was adopted in the decoder stage to enhance the features further and suppress interference factors. A dataset containing curtain wall frame images of different styles in various curtain wall construction scenarios was established to verify the effectiveness of this method, which is trained, validated, and tested with this dataset. The experimental results show that the detection performance of the proposed method is superior to the commonly used segmentation or detection methods, which achieves the highest mIoU 87.33%, Accuracy 96.98%, Recall 92.28%, F1-Score 87.66%, and the lowest 95-HD 6.13. This model is expected to be deployed and applied to curtain wall installation robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mm发布了新的文献求助10
刚刚
拒绝焦虑完成签到,获得积分10
1秒前
医无止境完成签到,获得积分10
1秒前
充电宝应助谦让的化蛹采纳,获得10
1秒前
1秒前
美满的稚晴完成签到 ,获得积分10
2秒前
qing完成签到,获得积分10
3秒前
小周发布了新的文献求助10
4秒前
禅蝉婵阐关注了科研通微信公众号
4秒前
huaner完成签到,获得积分10
5秒前
SAINT发布了新的文献求助10
6秒前
6秒前
Jeffrey发布了新的文献求助10
6秒前
qing发布了新的文献求助100
7秒前
SYLH应助DDDiamond采纳,获得10
9秒前
9秒前
蓝意完成签到 ,获得积分20
10秒前
小萌新完成签到,获得积分10
11秒前
12秒前
13秒前
震动的尔曼完成签到,获得积分10
14秒前
tetrodotoxin应助南兮采纳,获得10
15秒前
cdercder发布了新的文献求助10
16秒前
16秒前
呵呵喊我完成签到,获得积分10
17秒前
Akim应助galioo3000采纳,获得10
18秒前
18秒前
淋湿的雨完成签到 ,获得积分10
18秒前
duobao发布了新的文献求助10
19秒前
19秒前
19秒前
Jeffreyzhong完成签到,获得积分10
20秒前
蓝意发布了新的文献求助10
21秒前
22秒前
斯文的毛豆完成签到 ,获得积分10
22秒前
学术野猪发布了新的文献求助10
23秒前
慧子发布了新的文献求助10
23秒前
23秒前
科目三应助5165asd采纳,获得10
23秒前
24秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826018
求助须知:如何正确求助?哪些是违规求助? 3368368
关于积分的说明 10450432
捐赠科研通 3087859
什么是DOI,文献DOI怎么找? 1698821
邀请新用户注册赠送积分活动 817155
科研通“疑难数据库(出版商)”最低求助积分说明 770065