BLAM6A-Merge: Leveraging Attention Mechanisms and Feature Fusion Strategies to Improve the Identification of RNA N6-methyladenosine Sites

合并(版本控制) 计算机科学 鉴定(生物学) 人工智能 数据科学 情报检索 生物 生态学
作者
Yunpeng Xia,Ying Zhang,Dian Liu,Yiheng Zhu,Zhikang Wang,Jiangning Song,Dong‐Jun Yu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tcbb.2024.3418490
摘要

RNA N6-methyladenosine is a prevalent and abundant type of RNA modification that exerts significant influence on diverse biological processes. To date, numerous computational approaches have been developed for predicting methylation, with most of them ignoring the correlations of different encoding strategies and failing to explore the adaptability of various attention mechanisms for methylation identification. To solve the above issues, we proposed an innovative framework for predicting RNA m6A modification site, termed BLAM6A-Merge. Specifically, it utilized a multimodal feature fusion strategy to combine the classification results of four features and Blastn tool. Apart from this, different attention mechanisms were employed for extracting higher-level features on specific features after the screening process. Extensive experiments on 12 benchmarking datasets demonstrated that BLAM6A-Merge achieved superior performance (average AUC: 0.849 for the full transcript mode and 0.784 for the mature mRNA mode). Notably, the Blastn tool was employed for the first time in the identification of methylation sites. The data and code can be accessed at https://github.com/DoraemonXia/BLAM6A-Merge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
超帅冰蝶完成签到,获得积分10
1秒前
lishanshan完成签到,获得积分10
1秒前
Criminology34应助gapper采纳,获得10
2秒前
小蘑菇应助WM采纳,获得10
2秒前
小熊软糖发布了新的文献求助10
2秒前
lishanshan发布了新的文献求助10
4秒前
复杂忻发布了新的文献求助30
4秒前
5秒前
英俊的铭应助Freesia采纳,获得10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
FashionBoy应助贝贝采纳,获得10
6秒前
6秒前
上官若男应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
漫漫完成签到 ,获得积分10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
7秒前
田様应助科研通管家采纳,获得10
8秒前
8秒前
情怀应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得30
8秒前
华仔应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助150
10秒前
10秒前
dddd发布了新的文献求助10
11秒前
酷波er应助郑凯翔采纳,获得10
13秒前
13秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125011
求助须知:如何正确求助?哪些是违规求助? 4329012
关于积分的说明 13489539
捐赠科研通 4163648
什么是DOI,文献DOI怎么找? 2282463
邀请新用户注册赠送积分活动 1283623
关于科研通互助平台的介绍 1222905