Multi-modal policy fusion for end-to-end autonomous driving

计算机科学 自编码 保险丝(电气) 特征(语言学) 人工智能 强化学习 情态动词 端到端原则 机器学习 传感器融合 理论(学习稳定性) 人工神经网络 工程类 电气工程 哲学 语言学 化学 高分子化学
作者
Ziming Huang,Shiliang Sun,Jing Zhao,Liang Mao
出处
期刊:Information Fusion [Elsevier BV]
卷期号:98: 101834-101834 被引量:18
标识
DOI:10.1016/j.inffus.2023.101834
摘要

Multi-modal learning has made impressive progress in autonomous driving by leveraging information from multiple sensors. Existing feature fusion methods make decisions by integrating perceptions from different sensors. However, autonomous driving systems could be risky since the fused feature are unreliable when one of the sensors fails. Moreover, these methods require either sophisticated geometric designs to align features or complex neural networks to effectively fuse features, significantly increasing the training cost. In this paper, we propose PolicyFuser, a policy fusion method for end-to-end autonomous driving to address these issues. PolicyFuser retains an independent decision for each sensor, and no feature alignment or complex neural networks are required. To focus on the best policy, we use reinforcement learning to select the action with the highest Q-value as the primary decision, and the remaining actions as the secondary decisions. Then the secondary decisions are used to fine-tune the primary decision through a primary and secondary policy fusion (PSF) module. To bridge the gap between the decisions from different sensors and improve the stability of policy fusion, we use a conditional variational autoencoder (CVAE) to generate pseudo-expert decisions. We demonstrate the effectiveness of our method in CARLA, and our method achieves the highest driving scores and handles sensor failures with excellence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
椿iii完成签到 ,获得积分10
2秒前
西柚柠檬发布了新的文献求助10
2秒前
所所应助虚设采纳,获得10
3秒前
LRRAM_809发布了新的文献求助10
3秒前
3秒前
4秒前
heli发布了新的文献求助10
5秒前
5秒前
AltairKing发布了新的文献求助10
6秒前
沉默完成签到,获得积分10
6秒前
6秒前
7秒前
开心岩发布了新的文献求助10
7秒前
皮克斯完成签到 ,获得积分10
8秒前
霸气傲蕾发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
10秒前
11秒前
Zsl发布了新的文献求助10
11秒前
0_0完成签到,获得积分10
12秒前
Hoshi发布了新的文献求助10
12秒前
慕青应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
llzuo发布了新的文献求助10
13秒前
思源应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
14秒前
14秒前
今后应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The direct observation of dislocations 200
Reference Guide for Dynamic Models of HVAC Equipment 200
A Treatise on Hydrostatics and Hydrodynamics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836546
求助须知:如何正确求助?哪些是违规求助? 3378791
关于积分的说明 10506233
捐赠科研通 3098534
什么是DOI,文献DOI怎么找? 1706564
邀请新用户注册赠送积分活动 821075
科研通“疑难数据库(出版商)”最低求助积分说明 772431