Spatial-Spectral Transformer for Hyperspectral Image Classification

过度拟合 计算机科学 高光谱成像 模式识别(心理学) 人工智能 卷积神经网络 变压器 特征提取 人工神经网络 电压 物理 量子力学
作者
Xin He,Yushi Chen,Zhouhan Lin
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (3): 498-498 被引量:376
标识
DOI:10.3390/rs13030498
摘要

Recently, a great many deep convolutional neural network (CNN)-based methods have been proposed for hyperspectral image (HSI) classification. Although the proposed CNN-based methods have the advantages of spatial feature extraction, they are difficult to handle the sequential data with and CNNs are not good at modeling the long-range dependencies. However, the spectra of HSI are a kind of sequential data, and HSI usually contains hundreds of bands. Therefore, it is difficult for CNNs to handle HSI processing well. On the other hand, the Transformer model, which is based on an attention mechanism, has proved its advantages in processing sequential data. To address the issue of capturing relationships of sequential spectra in HSI in a long distance, in this study, Transformer is investigated for HSI classification. Specifically, in this study, a new classification framework titled spatial-spectral Transformer (SST) is proposed for HSI classification. In the proposed SST, a well-designed CNN is used to extract the spatial features, and a modified Transformer (a Transformer with dense connection, i.e., DenseTransformer) is proposed to capture sequential spectra relationships, and multilayer perceptron is used to finish the final classification task. Furthermore, dynamic feature augmentation, which aims to alleviate the overfitting problem and therefore generalize the model well, is proposed and added to the SST (SST-FA). In addition, to address the issue of limited training samples in HSI classification, transfer learning is combined with SST, and another classification framework titled transferring-SST (T-SST) is proposed. At last, to mitigate the overfitting problem and improve the classification accuracy, label smoothing is introduced for the T-SST-based classification framework (T-SST-L). The proposed SST, SST-FA, T-SST, and T-SST-L are tested on three widely used hyperspectral datasets. The obtained results reveal that the proposed models provide competitive results compared to the state-of-the-art methods, which shows that the concept of Transformer opens a new window for HSI classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不想起名字完成签到,获得积分10
刚刚
yolo完成签到,获得积分10
1秒前
研友_VZG7GZ应助牛马采纳,获得10
3秒前
wang发布了新的文献求助10
3秒前
赘婿应助阡陌采纳,获得10
3秒前
3秒前
jusss完成签到,获得积分10
4秒前
scxl2000完成签到 ,获得积分10
4秒前
陶醉的纲发布了新的文献求助10
5秒前
5秒前
白下江宁完成签到 ,获得积分10
5秒前
蜘蛛侠发布了新的文献求助10
7秒前
lishanshan发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
落后立果发布了新的文献求助20
9秒前
juddddddy完成签到 ,获得积分10
9秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
KSung完成签到 ,获得积分10
12秒前
橙哈哈发布了新的文献求助10
12秒前
闪闪的琪发布了新的文献求助10
13秒前
英勇的电话完成签到 ,获得积分10
13秒前
13秒前
李健应助nannan采纳,获得10
14秒前
cc发布了新的文献求助10
14秒前
落后豌豆发布了新的文献求助10
14秒前
Hoiden完成签到,获得积分10
14秒前
qqqq发布了新的文献求助30
15秒前
章德仁发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
Twonej应助一一采纳,获得30
17秒前
老实秋寒应助Woo_SH采纳,获得10
17秒前
19秒前
领导范儿应助3080采纳,获得10
20秒前
整箱发布了新的文献求助10
21秒前
王志杰发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712864
求助须知:如何正确求助?哪些是违规求助? 5212603
关于积分的说明 15268873
捐赠科研通 4864679
什么是DOI,文献DOI怎么找? 2611584
邀请新用户注册赠送积分活动 1561888
关于科研通互助平台的介绍 1519133