Vehicle Trajectory Prediction Based on Motion Model and Maneuver Model Fusion with Interactive Multiple Models

弹道 计算机科学 运动(物理) 加速度 卡尔曼滤波器 人工智能 控制理论(社会学) 高级驾驶员辅助系统 模拟 控制(管理) 天文 经典力学 物理
作者
Wei Xiao,Lijun Zhang,Dejian Meng
出处
期刊:SAE International Journal of Advances and Current Practices in Mobility 卷期号:2 (6): 3060-3071 被引量:15
标识
DOI:10.4271/2020-01-0112
摘要

<div class="section abstract"><div class="htmlview paragraph">Safety is the cornerstone for Advanced Driver Assistance Systems (ADAS) and Autonomous Driving Systems (ADS). To assess the safety of a traffic situation, it is essential to predict motion states of traffic participants in the future with mathematic models. Accurate vehicle trajectory prediction is an important prerequisite for reasonable traffic situation risk assessment and appropriate decision making. Vehicle trajectory prediction methods can be generally divided into motion model based methods and maneuver model based methods. Vehicle trajectory prediction based on motion models can be accurate and reliable only in the short term. While vehicle trajectory prediction based on maneuver models present more satisfactory performance in the long term, these maneuver models rely on machine learning methods. Abundant data should be collected to train the maneuver recognition model, which increases complexity and lowers real-time performance. In this paper, a vehicle trajectory prediction method based on motion model and maneuver model fusion with Interactive Multiple Model (IMM) is proposed. Firstly, Constant Turn Rate and Acceleration (CTRA) motion model and Unscented Kalman Filter (UKF) are used to predict vehicle trajectory with uncertainty in the future. Then, vehicle trajectory prediction based on simplified maneuver recognition model is conducted, using temporal and spatial relationship between vehicle historical trajectory and lane lines. After that, vehicle trajectory prediction by integrating motion model and maneuver model with IMM is conducted. Finally, the proposed method is compared with CTRA motion model based vehicle trajectory prediction and lane keeping model (LKM) based vehicle trajectory prediction in two simulation test scenarios. The simulation results indicates that the IMM-based method achieves both excellent prediction accuracy and appropriate prediction uncertainty in the whole prediction horizon. This research can be used to support decision making for Advanced Driver Assistance Systems (ADAS) and Autonomous Driving Systems and leads to improvement of traffic safety.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研兄发布了新的文献求助10
1秒前
1秒前
1秒前
Ali完成签到,获得积分10
2秒前
海绵baobao发布了新的文献求助10
4秒前
Lsy完成签到 ,获得积分20
5秒前
Ali发布了新的文献求助10
6秒前
7秒前
漆漆发布了新的文献求助10
7秒前
Mr.Ren发布了新的文献求助10
7秒前
7秒前
8秒前
xxxx发布了新的文献求助10
8秒前
天天快乐应助勤恳凡儿采纳,获得10
8秒前
F1y发布了新的文献求助10
10秒前
LSDTC发布了新的文献求助10
12秒前
漆漆完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
14秒前
满意宛筠发布了新的文献求助10
14秒前
demo完成签到,获得积分10
15秒前
16秒前
科研通AI5应助ydk采纳,获得10
17秒前
传奇3应助专注纸鹤采纳,获得10
17秒前
研友_ZegWmL发布了新的文献求助10
18秒前
阔达语柔发布了新的文献求助10
20秒前
Alias1234发布了新的文献求助10
21秒前
21秒前
科研通AI5应助望北采纳,获得10
23秒前
xun完成签到,获得积分20
23秒前
哈哈哈完成签到 ,获得积分10
25秒前
jueshadi发布了新的文献求助10
27秒前
所所应助xun采纳,获得10
28秒前
adamhe发布了新的文献求助10
29秒前
niekyang完成签到 ,获得积分10
31秒前
keyandog发布了新的文献求助10
32秒前
科研通AI5应助caicai采纳,获得10
32秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Dynamic Programming and Optimal Control 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829952
求助须知:如何正确求助?哪些是违规求助? 3372514
关于积分的说明 10472969
捐赠科研通 3092095
什么是DOI,文献DOI怎么找? 1701755
邀请新用户注册赠送积分活动 818609
科研通“疑难数据库(出版商)”最低求助积分说明 770986