海盐
铵
无机离子
硝酸盐
气溶胶
环境化学
盐(化学)
化学
质量浓度(化学)
硝酸铵
环境科学
离子
物理化学
有机化学
作者
Xin Wu,Junjun Deng,Jinsheng Chen,Youwei Hong,Lingling Xu,Liqian Yin,Wenjiao Du,Zhenyu Hong,Nanzhen Dai,Chung‐Shin Yuan
标识
DOI:10.4209/aaqr.2016.11.0513
摘要
To investigate the characteristics of water-soluble inorganic ions (WSIIs) of PM2.5 and aerosol acidity in a coastal city, 352 samples were collected at four sites representing four functional zones (FJ: living town; XY: industrial area; TZ: scenery areas; HR: harbor) in Xiamen, China in 2015–2016. Mass concentrations of PM2.5, nine WSIIs, total acidity and in-situ acidity of aerosol/non-sea-salt aerosol were measured. Overall, the mean mass concentrations of PM2.5 in the study area in spring, summer, autumn and winter were 57.5 ± 22.3, 28.1 ± 12.6, 46.8 ± 18.3 and 62.4 ± 22.1 µg m–3, respectively. WSIIs accounted for 36%–56% of PM2.5 at four sites. Secondary ions (non-sea-salt SO42–, NO3– and NH4+) contributed more than 74% to total WSIIs. Neutralization degree distributions indicated that 79.5% of PM2.5 was acidic. Total acidity and in-situ acidity both showed obvious seasonal variations, exhibited the peak values of 193.20 and 130.17 nmol m–3 at HR site in summer. Sea-salt contributed 2.58%–17.74% to acidity in four seasons. The normalized ammonium concentration ([NH4+]/[SO42–]) and normalized nitrate concentration ([NO3–]/[SO42–]) showed greater correlation coefficients after eliminating the ammonium-poor data points (greater than 0.66), especially at HR site. NH4HSO4 was the major form of WSIIs in PM2.5 and the formation of aqueous HNO3 could enhance aerosol acidity.
科研通智能强力驱动
Strongly Powered by AbleSci AI