稳健性(进化)
材料科学
卷积(计算机科学)
计算机科学
异质结
神经形态工程学
卷积神经网络
光电子学
钙钛矿(结构)
人工智能
光伏
光伏系统
机器视觉
特征提取
图像传感器
电子工程
计算机视觉
视觉对象识别的认知神经科学
铁电性
高动态范围成像
核(代数)
对象(语法)
智能材料
GSM演进的增强数据速率
光电探测器
面子(社会学概念)
特征(语言学)
边缘检测
支持向量机
人工神经网络
面部识别系统
作者
Jie Liu,Fan Du,Limin Wu,Xu Fang
标识
DOI:10.1002/adma.202520823
摘要
ABSTRACT Machine vision systems face significant challenges in accurately extracting critical features from dim objects under complex scenarios. Here, we demonstrate a ferroelectric‐configured weight‐reconfigurable photovoltaic device array for in‐sensor dynamic computing, enabling robust recognition of dim objects. A series of 2D perovskite ferroelectric nanoplates with controllable size, high crystallinity, and excellent yield are directly synthesized. Reconfigurable and nonvolatile photovoltaics in a graphene/ferroelectric/graphene heterostructure are modulated through switchable ferroelectric polarization. Leveraging the ferroelectric‐configured photoresponsivity, a convolution kernel optoelectronic sensor array with dynamic correlation of adjacent units is designed for in‐sensor dynamic computing. Compared with traditional static optoelectronic convolution processing, our approach selectively amplifies subtle differences of local image pixels, enabling effective edge feature extraction even in low‐contrast scenes. Integrated with a convolutional neural network, the system significantly enhances the robustness and accuracy of dim object detection, offering a promising platform for advanced machine vision applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI