FT-MIR and NIR spectral data fusion: a synergetic strategy for the geographical traceability of Panax notoginseng

融合 可追溯性 三七 色谱法 化学 纳米技术 分析化学(期刊) 工程类 材料科学 语言学 医学 软件工程 哲学 病理 替代医学
作者
Yun Li,Jinyu Zhang,Yuanzhong Wang
出处
期刊:Analytical and Bioanalytical Chemistry [Springer Science+Business Media]
卷期号:410 (1): 91-103 被引量:141
标识
DOI:10.1007/s00216-017-0692-0
摘要

Three data fusion strategies (low-llevel, mid-llevel, and high-llevel) combined with a multivariate classification algorithm (random forest, RF) were applied to authenticate the geographical origins of Panax notoginseng collected from five regions of Yunnan province in China. In low-level fusion, the original data from two spectra (Fourier transform mid-IR spectrum and near-IR spectrum) were directly concatenated into a new matrix, which then was applied for the classification. Mid-level fusion was the strategy that inputted variables extracted from the spectral data into an RF classification model. The extracted variables were processed by iterate variable selection of the RF model and principal component analysis. The use of high-level fusion combined the decision making of each spectroscopic technique and resulted in an ensemble decision. The results showed that the mid-level and high-level data fusion take advantage of the information synergy from two spectroscopic techniques and had better classification performance than that of independent decision making. High-level data fusion is the most effective strategy since the classification results are better than those of the other fusion strategies: accuracy rates ranged between 93% and 96% for the low-level data fusion, between 95% and 98% for the mid-level data fusion, and between 98% and 100% for the high-level data fusion. In conclusion, the high-level data fusion strategy for Fourier transform mid-IR and near-IR spectra can be used as a reliable tool for correct geographical identification of P. notoginseng. Graphical abstract The analytical steps of Fourier transform mid-IR and near-IR spectral data fusion for the geographical traceability of Panax notoginseng.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宇宙的宇发布了新的文献求助10
1秒前
1秒前
嘿嘿关注了科研通微信公众号
1秒前
我套了完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助50
3秒前
3秒前
科研通AI5应助ZZQ采纳,获得10
4秒前
5秒前
6秒前
传奇3应助绝望的老实人采纳,获得10
8秒前
简单发布了新的文献求助10
8秒前
enh发布了新的文献求助10
8秒前
勤奋的饼干完成签到,获得积分10
9秒前
TaoYe发布了新的文献求助20
10秒前
sb发布了新的文献求助10
10秒前
Aaron完成签到,获得积分10
12秒前
13秒前
13秒前
搜集达人应助enh采纳,获得30
14秒前
CQ完成签到 ,获得积分10
14秒前
js110发布了新的文献求助10
15秒前
隐形曼青应助勤奋的饼干采纳,获得30
15秒前
16秒前
Ftplanet发布了新的文献求助10
17秒前
19秒前
Terfi发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
空2完成签到 ,获得积分0
20秒前
难过峻熙发布了新的文献求助10
21秒前
21秒前
Lny应助寒江雪采纳,获得10
21秒前
欣喜谷槐完成签到,获得积分10
22秒前
西西弗斯完成签到,获得积分0
23秒前
23秒前
24秒前
24秒前
agnes完成签到,获得积分10
25秒前
26秒前
owoow完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069868
求助须知:如何正确求助?哪些是违规求助? 4291111
关于积分的说明 13369607
捐赠科研通 4111377
什么是DOI,文献DOI怎么找? 2251468
邀请新用户注册赠送积分活动 1256618
关于科研通互助平台的介绍 1189158