已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Novel pneumonia score based on a machine learning model for predicting mortality in pneumonia patients on admission to the intensive care unit

医学 肺炎 重症监护室 内科学 重症监护医学 急诊医学
作者
Bin Wang,Yuanxiao Li,Ying Tian,Changxi Ju,Xiaonan Xu,Shufen Pei
出处
期刊:Respiratory Medicine [Elsevier]
卷期号:217: 107363-107363 被引量:20
标识
DOI:10.1016/j.rmed.2023.107363
摘要

Scores for predicting the long-term mortality of severe pneumonia are lacking. The purpose of this study is to use machine learning methods to develop new pneumonia scores to predict the 1-year mortality and hospital mortality of pneumonia patients on admission to the intensive care unit (ICU).The study population was screened from the MIMIC-IV and eICU databases. The main outcomes evaluated were 1-year mortality and hospital mortality in the MIMIC-IV database and hospital mortality in the eICU database. From the full data set, we separated patients diagnosed with community-acquired pneumonia (CAP) and ventilator-associated pneumonia (VAP) for subgroup analysis. We used common shallow machine learning algorithms, including logistic regression, decision tree, random forest, multilayer perceptron and XGBoost.The full data set of the MIMIC-IV database contained 4697 patients, while that of the eICU database contained 13760 patients. We defined a new pneumonia score, the "Integrated CCI-APS", using a multivariate logistic regression model including six variables: metastatic solid tumor, Charlson Comorbidity Index, readmission, congestive heart failure, age, and Acute Physiology Score III. The area under the curve (AUC) and accuracy of the integrated CCI-APS were assessed in three data sets (full, CAP, and VAP) using both the test set derived from the MIMIC-IV database and the external validation set derived from the eICU database. The AUC value ranges in predicting 1-year and hospital mortality were 0.784-0.797 and 0.691-0.780, respectively, and the corresponding accuracy ranges were 0.723-0.725 and 0.641-0.718, respectively.The main contribution of this study was a benchmark for using machine learning models to build pneumonia scores. Based on the idea of integrated learning, we propose a new integrated CCI-APS score for severe pneumonia. In the prediction of 1-year mortality and hospital mortality, our new pneumonia score outperformed the existing score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利寄文完成签到,获得积分10
刚刚
jianhan完成签到,获得积分10
刚刚
Demi_Ming完成签到,获得积分10
2秒前
哑巴和喇叭完成签到 ,获得积分10
5秒前
7秒前
dldldldl完成签到 ,获得积分20
12秒前
T1aNer299发布了新的文献求助10
13秒前
小林同学0219完成签到 ,获得积分10
15秒前
LLL发布了新的文献求助10
15秒前
Carmen完成签到,获得积分10
21秒前
ANG完成签到 ,获得积分10
21秒前
25秒前
酒渡完成签到,获得积分10
25秒前
sandra发布了新的文献求助10
26秒前
nbing完成签到,获得积分10
30秒前
Esther应助dawn采纳,获得10
35秒前
39秒前
BW完成签到,获得积分10
40秒前
周冯雪完成签到 ,获得积分10
41秒前
CHERIE发布了新的文献求助10
44秒前
科研通AI2S应助T1aNer299采纳,获得10
44秒前
小二郎应助sandra采纳,获得10
45秒前
LXF关闭了LXF文献求助
49秒前
yuan发布了新的文献求助10
50秒前
50秒前
50秒前
CHERIE完成签到,获得积分10
52秒前
54秒前
在水一方应助耳东陈采纳,获得10
57秒前
善学以致用应助英勇羿采纳,获得10
58秒前
居居发布了新的文献求助10
1分钟前
1分钟前
风一样的风干肠完成签到 ,获得积分10
1分钟前
T1aNer299发布了新的文献求助10
1分钟前
1分钟前
1分钟前
哈基米德应助科研通管家采纳,获得20
1分钟前
1分钟前
哈基米德应助科研通管家采纳,获得20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345529
求助须知:如何正确求助?哪些是违规求助? 4480441
关于积分的说明 13946306
捐赠科研通 4377975
什么是DOI,文献DOI怎么找? 2405510
邀请新用户注册赠送积分活动 1398115
关于科研通互助平台的介绍 1370519