Novel pneumonia score based on a machine learning model for predicting mortality in pneumonia patients on admission to the intensive care unit

医学 肺炎 重症监护室 内科学 重症监护医学 急诊医学
作者
Bin Wang,Yuanxiao Li,Ying Tian,Changxi Ju,Xiaonan Xu,Shufen Pei
出处
期刊:Respiratory Medicine [Elsevier BV]
卷期号:217: 107363-107363 被引量:17
标识
DOI:10.1016/j.rmed.2023.107363
摘要

Scores for predicting the long-term mortality of severe pneumonia are lacking. The purpose of this study is to use machine learning methods to develop new pneumonia scores to predict the 1-year mortality and hospital mortality of pneumonia patients on admission to the intensive care unit (ICU).The study population was screened from the MIMIC-IV and eICU databases. The main outcomes evaluated were 1-year mortality and hospital mortality in the MIMIC-IV database and hospital mortality in the eICU database. From the full data set, we separated patients diagnosed with community-acquired pneumonia (CAP) and ventilator-associated pneumonia (VAP) for subgroup analysis. We used common shallow machine learning algorithms, including logistic regression, decision tree, random forest, multilayer perceptron and XGBoost.The full data set of the MIMIC-IV database contained 4697 patients, while that of the eICU database contained 13760 patients. We defined a new pneumonia score, the "Integrated CCI-APS", using a multivariate logistic regression model including six variables: metastatic solid tumor, Charlson Comorbidity Index, readmission, congestive heart failure, age, and Acute Physiology Score III. The area under the curve (AUC) and accuracy of the integrated CCI-APS were assessed in three data sets (full, CAP, and VAP) using both the test set derived from the MIMIC-IV database and the external validation set derived from the eICU database. The AUC value ranges in predicting 1-year and hospital mortality were 0.784-0.797 and 0.691-0.780, respectively, and the corresponding accuracy ranges were 0.723-0.725 and 0.641-0.718, respectively.The main contribution of this study was a benchmark for using machine learning models to build pneumonia scores. Based on the idea of integrated learning, we propose a new integrated CCI-APS score for severe pneumonia. In the prediction of 1-year mortality and hospital mortality, our new pneumonia score outperformed the existing score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小井盖完成签到 ,获得积分10
6秒前
归尘应助一个小胖子采纳,获得10
8秒前
简单发布了新的文献求助20
16秒前
18秒前
烟花应助ira采纳,获得10
21秒前
李健应助wyt1239012采纳,获得10
24秒前
归尘应助一个小胖子采纳,获得10
24秒前
笨笨青筠完成签到 ,获得积分10
32秒前
37秒前
XD824发布了新的文献求助10
39秒前
一个小胖子完成签到,获得积分10
39秒前
41秒前
归尘应助一个小胖子采纳,获得10
43秒前
46秒前
46秒前
LX完成签到 ,获得积分10
50秒前
CNS天天有发布了新的文献求助10
51秒前
52秒前
wangyt完成签到,获得积分10
53秒前
了凡完成签到 ,获得积分10
55秒前
1分钟前
Acadia发布了新的文献求助10
1分钟前
小石头完成签到 ,获得积分10
1分钟前
可靠的南霜完成签到 ,获得积分10
1分钟前
CNS天天有完成签到,获得积分10
1分钟前
1分钟前
ED应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
ED应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
有人发布了新的文献求助10
1分钟前
Lisztan完成签到,获得积分10
1分钟前
1分钟前
1分钟前
CherylZhao完成签到,获得积分10
1分钟前
小田完成签到 ,获得积分10
1分钟前
Luna爱科研完成签到 ,获得积分10
1分钟前
一一一完成签到,获得积分10
1分钟前
1分钟前
勤劳的颤完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777661
求助须知:如何正确求助?哪些是违规求助? 3323099
关于积分的说明 10212972
捐赠科研通 3038447
什么是DOI,文献DOI怎么找? 1667372
邀请新用户注册赠送积分活动 798115
科研通“疑难数据库(出版商)”最低求助积分说明 758263