Rapid diagnosis of corrosion beneath epoxy protective coating using non-contact THz-TDS technique

支持向量机 涂层 小波 小波包分解 环氧树脂 网络数据包 计算机科学 人工智能 特征提取 模式识别(心理学) 材料科学 太赫兹辐射 小波变换 复合材料 光电子学 计算机网络
作者
Wanli Tu,Shuncong Zhong,Qiukun Zhang,Yi Huang
出处
期刊:Nondestructive Testing and Evaluation [Informa]
卷期号:39 (3): 557-572 被引量:8
标识
DOI:10.1080/10589759.2023.2214670
摘要

ABSTRACTABSTRACTA reliable and effective diagnosis of coating structure is important for further maintenance. For the problem of slow detection and identification using terahertz non-destructive testing technology in the industrial inspection, a rapid diagnosis algorithm based on the wavelet packet energy and support vector machine method was developed for quick evaluation of the epoxy protective coating. The process mainly included time domain signal acquisition of various epoxy protective coating samples detected by a terahertz pulse imaging system, wavelet packet energy parameters extraction as the diagnosis feature vectors, classification model establishment based on the support vector machine algorithm and coating status evaluation using a three-class classifier. The influence on classification accuracy by the various feature vectors inputs with the support vector machine classifier was analysed. Satisfying results were achieved when the relative wavelet packet energy was taken as diagnostic features. A strong defective area could be quickly identified and more detail targeted analysis could be implemented as needed. The time spent was significantly reduced compared to the terahertz imaging of the whole area along with the manual judgement. The analysis indicated that the proposed method would be very useful and can be effectively employed for the coating monitoring application.KEYWORDS: Epoxy protective coatingterahertz non-destructive testing techniquewavelet packet energysupport vector machine AcknowledgmentsThis work was supported in part by the National Natural Science Foundation of China (Nos. 52101355 and 51905102) and in part by the Fujian Provincial Natural Science Foundation (No. 2019I0004).Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThe work was supported by the National Natural Science Foundation of China [51905102]; Natural Science Foundation of Fujian Province [2019I0004].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
xiaostou完成签到,获得积分10
1秒前
无花果应助Wendell采纳,获得10
1秒前
1秒前
阿梓完成签到,获得积分10
1秒前
lisa发布了新的文献求助10
3秒前
Ripples发布了新的文献求助30
4秒前
5秒前
6秒前
无花果应助嘻嘻采纳,获得10
6秒前
咩咩发布了新的文献求助10
7秒前
xf发布了新的文献求助10
7秒前
8秒前
水论文的云宝黛西完成签到,获得积分10
8秒前
8秒前
项阑悦发布了新的文献求助10
8秒前
hongjing发布了新的文献求助10
10秒前
老实的衬衫完成签到 ,获得积分10
11秒前
11秒前
11秒前
Fortune发布了新的文献求助10
12秒前
12秒前
Ripples完成签到,获得积分10
13秒前
彭于晏应助hongjing采纳,获得10
13秒前
科研通AI6应助wang采纳,获得10
13秒前
酷炫魂幽发布了新的文献求助10
14秒前
14秒前
浅蓝发布了新的文献求助10
15秒前
小杭76应助wocao采纳,获得10
15秒前
传奇3应助Refuel采纳,获得10
16秒前
huangbing123完成签到 ,获得积分10
16秒前
乐乐应助咩咩采纳,获得10
17秒前
漫天白沙完成签到 ,获得积分10
17秒前
tangzanwayne完成签到 ,获得积分10
18秒前
wanna发布了新的文献求助10
18秒前
18秒前
Wendell发布了新的文献求助10
19秒前
19秒前
项阑悦完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429