Rapid diagnosis of corrosion beneath epoxy protective coating using non-contact THz-TDS technique

支持向量机 涂层 小波 小波包分解 环氧树脂 网络数据包 计算机科学 人工智能 特征提取 模式识别(心理学) 材料科学 太赫兹辐射 小波变换 复合材料 光电子学 计算机网络
作者
Wanli Tu,Shuncong Zhong,Qiukun Zhang,Yi Huang
出处
期刊:Nondestructive Testing and Evaluation [Taylor & Francis]
卷期号:39 (3): 557-572 被引量:5
标识
DOI:10.1080/10589759.2023.2214670
摘要

ABSTRACTABSTRACTA reliable and effective diagnosis of coating structure is important for further maintenance. For the problem of slow detection and identification using terahertz non-destructive testing technology in the industrial inspection, a rapid diagnosis algorithm based on the wavelet packet energy and support vector machine method was developed for quick evaluation of the epoxy protective coating. The process mainly included time domain signal acquisition of various epoxy protective coating samples detected by a terahertz pulse imaging system, wavelet packet energy parameters extraction as the diagnosis feature vectors, classification model establishment based on the support vector machine algorithm and coating status evaluation using a three-class classifier. The influence on classification accuracy by the various feature vectors inputs with the support vector machine classifier was analysed. Satisfying results were achieved when the relative wavelet packet energy was taken as diagnostic features. A strong defective area could be quickly identified and more detail targeted analysis could be implemented as needed. The time spent was significantly reduced compared to the terahertz imaging of the whole area along with the manual judgement. The analysis indicated that the proposed method would be very useful and can be effectively employed for the coating monitoring application.KEYWORDS: Epoxy protective coatingterahertz non-destructive testing techniquewavelet packet energysupport vector machine AcknowledgmentsThis work was supported in part by the National Natural Science Foundation of China (Nos. 52101355 and 51905102) and in part by the Fujian Provincial Natural Science Foundation (No. 2019I0004).Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThe work was supported by the National Natural Science Foundation of China [51905102]; Natural Science Foundation of Fujian Province [2019I0004].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juliar完成签到 ,获得积分10
刚刚
orixero应助紫苏桃子姜采纳,获得10
1秒前
嗯很好发布了新的文献求助10
2秒前
领导范儿应助Ade阿德采纳,获得10
3秒前
花花完成签到 ,获得积分10
4秒前
ding应助科研小硕士采纳,获得10
5秒前
X先生完成签到 ,获得积分10
6秒前
零容忍发布了新的文献求助10
9秒前
wanwan完成签到,获得积分10
11秒前
YUAN完成签到,获得积分10
12秒前
17秒前
18秒前
21秒前
21秒前
Ade阿德发布了新的文献求助10
22秒前
MY完成签到,获得积分10
23秒前
san行发布了新的文献求助10
23秒前
焖饼完成签到,获得积分20
23秒前
vicky完成签到 ,获得积分10
27秒前
CXX完成签到 ,获得积分10
27秒前
28秒前
焖饼发布了新的文献求助10
28秒前
小虫学长应助如意数据线采纳,获得10
29秒前
san行驳回了SYLH应助
30秒前
水土洼完成签到,获得积分10
32秒前
善良的灵羊完成签到 ,获得积分10
32秒前
zmh完成签到,获得积分10
37秒前
38秒前
Shirley完成签到 ,获得积分10
39秒前
科目三应助科研通管家采纳,获得10
41秒前
kingwill应助科研通管家采纳,获得20
41秒前
所所应助科研通管家采纳,获得10
41秒前
Lucas应助科研通管家采纳,获得10
41秒前
43秒前
科研通AI5应助饱满秋采纳,获得10
43秒前
spenley完成签到,获得积分10
44秒前
moooonu完成签到,获得积分10
46秒前
49秒前
san行完成签到,获得积分10
50秒前
50秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816942
求助须知:如何正确求助?哪些是违规求助? 3360342
关于积分的说明 10407653
捐赠科研通 3078322
什么是DOI,文献DOI怎么找? 1690694
邀请新用户注册赠送积分活动 814001
科研通“疑难数据库(出版商)”最低求助积分说明 767958