Learning to Aggregate Multi-Scale Context for Instance Segmentation in Remote Sensing Images

计算机科学 棱锥(几何) 背景(考古学) 骨料(复合) 特征(语言学) 分割 判别式 人工智能 特征提取 任务(项目管理) 比例(比率) 利用 模式识别(心理学) 地理 工程类 哲学 物理 光学 复合材料 考古 材料科学 系统工程 地图学 语言学 计算机安全
作者
Ye Liu,Huifang Li,Chao Hu,Shuang Luo,Yan Luo,Chang Wen Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:33
标识
DOI:10.1109/tnnls.2023.3336563
摘要

The task of instance segmentation in remote sensing images, aiming at performing per-pixel labeling of objects at the instance level, is of great importance for various civil applications. Despite previous successes, most existing instance segmentation methods designed for natural images encounter sharp performance degradations when they are directly applied to top-view remote sensing images. Through careful analysis, we observe that the challenges mainly come from the lack of discriminative object features due to severe scale variations, low contrasts, and clustered distributions. In order to address these problems, a novel context aggregation network (CATNet) is proposed to improve the feature extraction process. The proposed model exploits three lightweight plug-and-play modules, namely, dense feature pyramid network (DenseFPN), spatial context pyramid (SCP), and hierarchical region of interest extractor (HRoIE), to aggregate global visual context at feature, spatial, and instance domains, respectively. DenseFPN is a multi-scale feature propagation module that establishes more flexible information flows by adopting interlevel residual connections, cross-level dense connections, and feature reweighting strategy. Leveraging the attention mechanism, SCP further augments the features by aggregating global spatial context into local regions. For each instance, HRoIE adaptively generates RoI features for different downstream tasks. Extensive evaluations of the proposed scheme on iSAID, DIOR, NWPU VHR-10, and HRSID datasets demonstrate that the proposed approach outperforms state-of-the-arts under similar computational costs. Source code and pretrained models are available at https://github.com/yeliudev/CATNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kristina完成签到,获得积分10
刚刚
请我吃饭好吗完成签到,获得积分10
1秒前
1秒前
1秒前
文文尔雅完成签到,获得积分10
1秒前
lyy发布了新的文献求助10
2秒前
兰lalan完成签到,获得积分10
4秒前
xxn发布了新的文献求助10
4秒前
7秒前
科研通AI2S应助失眠万仇采纳,获得10
7秒前
卓向梦完成签到,获得积分10
8秒前
毛毛完成签到,获得积分10
8秒前
SSS水鱼发布了新的文献求助10
8秒前
可爱的函函应助dzll采纳,获得10
9秒前
gouqi完成签到,获得积分10
10秒前
10秒前
gouqi发布了新的文献求助10
13秒前
17秒前
21秒前
dzll发布了新的文献求助10
21秒前
奶油泡fu完成签到 ,获得积分10
23秒前
123完成签到,获得积分10
23秒前
cdercder应助扭扭车采纳,获得10
23秒前
cdercder应助扭扭车采纳,获得10
23秒前
雪白幻雪发布了新的文献求助10
27秒前
28秒前
29秒前
30秒前
顾矜应助双眸若星辰采纳,获得10
32秒前
深情安青应助Willer采纳,获得10
32秒前
orixero应助西贝采纳,获得10
32秒前
如意的尔竹完成签到 ,获得积分10
32秒前
牛牛发布了新的文献求助10
34秒前
赘婿应助wenyh采纳,获得10
35秒前
可里克里发布了新的文献求助10
36秒前
38秒前
38秒前
39秒前
搜集达人应助药小博采纳,获得10
40秒前
奋斗含巧完成签到,获得积分10
41秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829369
求助须知:如何正确求助?哪些是违规求助? 3372030
关于积分的说明 10470309
捐赠科研通 3091581
什么是DOI,文献DOI怎么找? 1701245
邀请新用户注册赠送积分活动 818327
科研通“疑难数据库(出版商)”最低求助积分说明 770830