3D Breast Cancer Segmentation in DCE‐MRI Using Deep Learning With Weak Annotation

基本事实 分割 人工智能 深度学习 计算机科学 注释 最小边界框 相关系数 乳腺癌 磁共振成像 相关性 人口 Sørensen–骰子系数 模式识别(心理学) 图像分割 机器学习 医学 数学 癌症 放射科 图像(数学) 几何学 内科学 环境卫生
作者
Ga Eun Park,Sung Hun Kim,Yoonho Nam,Junghwa Kang,Minjeong Park,Bong Joo Kang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (6): 2252-2262 被引量:16
标识
DOI:10.1002/jmri.28960
摘要

Background Deep learning models require large‐scale training to perform confidently, but obtaining annotated datasets in medical imaging is challenging. Weak annotation has emerged as a way to save time and effort. Purpose To develop a deep learning model for 3D breast cancer segmentation in dynamic contrast‐enhanced magnetic resonance imaging (DCE‐MRI) using weak annotation with reliable performance. Study Type Retrospective. Population Seven hundred and thirty‐six women with breast cancer from a single institution, divided into the development ( N = 544) and test dataset ( N = 192). Field Strength/Sequence 3.0‐T, 3D fat‐saturated gradient‐echo axial T1‐weighted flash 3D volumetric interpolated brain examination (VIBE) sequences. Assessment Two radiologists performed a weak annotation of the ground truth using bounding boxes. Based on this, the ground truth annotation was completed through autonomic and manual correction. The deep learning model using 3D U‐Net transformer (UNETR) was trained with this annotated dataset. The segmentation results of the test set were analyzed by quantitative and qualitative methods, and the regions were divided into whole breast and region of interest (ROI) within the bounding box. Statistical Tests As a quantitative method, we used the Dice similarity coefficient to evaluate the segmentation result. The volume correlation with the ground truth was evaluated with the Spearman correlation coefficient. Qualitatively, three readers independently evaluated the visual score in four scales. A P ‐value <0.05 was considered statistically significant. Results The deep learning model we developed achieved a median Dice similarity score of 0.75 and 0.89 for the whole breast and ROI, respectively. The volume correlation coefficient with respect to the ground truth volume was 0.82 and 0.86 for the whole breast and ROI, respectively. The mean visual score, as evaluated by three readers, was 3.4. Data Conclusion The proposed deep learning model with weak annotation may show good performance for 3D segmentations of breast cancer using DCE‐MRI. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Brett_Liu完成签到,获得积分10
刚刚
1秒前
大模型应助study采纳,获得10
1秒前
檀熹发布了新的文献求助10
1秒前
1秒前
cpxliteratur完成签到,获得积分10
1秒前
所所应助JiaJiaQing采纳,获得10
2秒前
2秒前
April发布了新的文献求助10
2秒前
lu发布了新的文献求助10
2秒前
feiyang发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
CHER完成签到 ,获得积分10
2秒前
柑橘乌云完成签到,获得积分20
3秒前
3秒前
小王同学完成签到 ,获得积分10
3秒前
星辰大海应助阿中采纳,获得10
4秒前
4秒前
田様应助创创采纳,获得10
4秒前
crillzlol发布了新的文献求助10
5秒前
5秒前
会发光的碳完成签到,获得积分10
5秒前
5秒前
hbydyy发布了新的文献求助10
5秒前
厄页石页完成签到,获得积分10
6秒前
6秒前
忐忑的网络完成签到,获得积分10
7秒前
dabuguoni给dabuguoni的求助进行了留言
7秒前
SihanYin发布了新的文献求助10
7秒前
小蘑菇应助samxie采纳,获得10
7秒前
夏冰发布了新的文献求助10
7秒前
黎黎发布了新的文献求助30
8秒前
哭泣若剑完成签到,获得积分10
8秒前
8秒前
令水白发布了新的文献求助10
8秒前
朝暮星河发布了新的文献求助10
9秒前
哈哈哈哈完成签到,获得积分10
9秒前
yeee关注了科研通微信公众号
9秒前
华仔应助无聊的土豆采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512216
求助须知:如何正确求助?哪些是违规求助? 4606600
关于积分的说明 14500450
捐赠科研通 4542054
什么是DOI,文献DOI怎么找? 2488803
邀请新用户注册赠送积分活动 1470901
关于科研通互助平台的介绍 1443089