High Electrochemical Performance Recycling Spent LiFePO4 Materials through the Preoxidation Regeneration Strategy

材料科学 电化学 经济短缺 原材料 化学工程 电导率 离子电导率 再生(生物学) 纳米技术 电极 电解质 化学 语言学 哲学 有机化学 物理化学 政府(语言学) 工程类 生物 细胞生物学
作者
Xiangnan Li,Qibin Zhou,Xiaoyuan Zhang,Ming Ge,Huishuang Zhang,Yadong Yin,Shuting Yang
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:11 (39): 14457-14466 被引量:6
标识
DOI:10.1021/acssuschemeng.3c03232
摘要

Recycling and regenerating spent lithium-ion batteries are significant in addressing raw material shortages and environmental issues. LiFePO4 (LFP) has been widely used for its stability and economy. However, considering the production cost of LFP, the traditional metallurgy method is unsuitable for LFP recycling due to its cumbersome nature and high energy consumption. Meanwhile, direct regeneration of LFP is mostly adopted in materials with slightly degraded electrochemical properties. There is no making without breaking. Herein, the preoxidized strategy for regenerating spent LFP (SLFP) is reported. Specifically, by combining the oxidation removal of impurities and the solid-phase method, we have successfully restored SLFP with severely degraded electrical properties. At the same time, the physical and electrochemical properties of preoxidized LFP (RLFP) and directly regenerated LFP are compared. The results show that the SLFP materials are adequately decomposed by preoxidized regeneration technology. The subsequent addition of glucose not only reduced Fe3+ but also enhanced the material’s conductivity as a uniform carbon layer. Then, Ti-doping is applied to improve the ionic conductivity of preoxidation-regenerated LFP material, and the rate performance of RLFP material is improved effectively. Compared with traditional methods, this technique is simple and has better environmental benefits. It provides a new possibility for the recycling of LFP materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8WzxMZ发布了新的文献求助10
1秒前
景景好完成签到,获得积分10
4秒前
所所应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
xiekaifan完成签到,获得积分10
6秒前
研友_8WzxMZ完成签到,获得积分10
7秒前
张三完成签到 ,获得积分10
9秒前
10秒前
柚子皮完成签到,获得积分10
11秒前
cctv18应助xixi采纳,获得10
11秒前
12秒前
13秒前
14秒前
支妙芙发布了新的文献求助10
15秒前
16秒前
海慕云完成签到,获得积分10
16秒前
CG2021发布了新的文献求助10
16秒前
畲田雨发布了新的文献求助30
17秒前
17秒前
Maroon5发布了新的文献求助50
18秒前
研友_GZ32mn完成签到,获得积分10
18秒前
leoling完成签到,获得积分20
19秒前
苏素发布了新的文献求助10
19秒前
21秒前
22秒前
尹俊采完成签到,获得积分10
24秒前
李健应助Prime采纳,获得10
24秒前
ding应助Prime采纳,获得10
24秒前
小二郎应助Prime采纳,获得10
24秒前
Hello应助Prime采纳,获得30
24秒前
ZeKaWa应助Prime采纳,获得10
24秒前
24秒前
小蘑菇应助Prime采纳,获得10
24秒前
个性的紫菜应助Prime采纳,获得10
24秒前
俗人完成签到,获得积分10
25秒前
媛子赚大qian完成签到,获得积分10
25秒前
米娅完成签到,获得积分10
26秒前
hunajx发布了新的文献求助10
27秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Hieronymi Mercurialis de Arte Gymnastica Libri Sex: In Quibus Exercitationum Omnium Vetustarum Genera, Loca, Modi, Facultates, Et Quidquid Deniq. Ad ... Diligenter Explicatur (Classic Reprint) Paperback – 23 April 2018 1000
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Hieronymi Mercurialis Foroliviensis De arte gymnastica libri sex: In quibus exercitationum omnium vetustarum genera, loca, modi, facultates, & ... exercitationes pertinet diligenter explicatur Hardcover – 26 August 2016 900
De arte gymnastica. The art of gymnastics 600
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2403036
求助须知:如何正确求助?哪些是违规求助? 2102138
关于积分的说明 5302981
捐赠科研通 1829654
什么是DOI,文献DOI怎么找? 911841
版权声明 560421
科研通“疑难数据库(出版商)”最低求助积分说明 487448