阳极
电池(电)
降级(电信)
电解质
反向
锂(药物)
锂离子电池
计算机科学
多目标优化
响应面法
材料科学
灵敏度(控制系统)
接口(物质)
生物系统
可靠性工程
化学
电子工程
数学
功率(物理)
物理
工程类
复合材料
热力学
物理化学
毛细管数
毛细管作用
内分泌学
生物
电信
机器学习
医学
电极
几何学
作者
Ruyu Xi,Yiyang Peng,Jinhan Li,Kuiming Liu,Meng Yao,Meng Yu,Jolyon Aarons,Fangyi Cheng
标识
DOI:10.1002/anie.202518502
摘要
Abstract Precise design and optimization of lithium‐ion batteries (LIBs) remain challenging due to their intricate, dynamic degradation mechanisms and the competitive interactions. Building upon a mechanism‐driven LIB lifetime prediction model based on capacity degradation, we propose an inverse design and optimization procedure (IDOP) that integrates parameter sensitivity analysis (PSA) and multiobjective optimization (MOO). For modeling, we employ directly adjustable design parameters of the anode and electrolyte and indirectly derived interfacial characteristics of anode/electrolyte interface. The PSA results indicate that areal density, particle radius, and interface characteristics exert a significant influence on battery lifetime. Using data from a reference LiNi 0.6 Co 0.1 Mn 0.3 O 2 ||graphite pouch cell for assessment, the MOO predicts a battery lifetime extension of up to 26.63% (70.97%) and 32.76% (138.41%) at 25 and 45 °C by optimizing direct (indirect) factors, respectively. Evaluation of the MOO‐optimized factors using the failure‐mechanism‐driven model demonstrates remarkable alignment in capacity degradation trajectories. The IDOP framework is a promising approach to improve the design and optimization efficiency for developing better LIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI