人工智能
同时定位和映射
计算机科学
Orb(光学)
计算机视觉
约束(计算机辅助设计)
特征(语言学)
机器人
深度学习
语义特征
比例(比率)
投影(关系代数)
跟踪(教育)
移动机器人
图像(数学)
工程类
算法
地理
机械工程
心理学
教育学
语言学
哲学
地图学
作者
Linjie Yang,Luping Wang
出处
期刊:Measurement
[Elsevier BV]
日期:2022-10-13
卷期号:204: 112001-112001
被引量:19
标识
DOI:10.1016/j.measurement.2022.112001
摘要
The visual SLAM in dynamic environment has been regarded as a fundamental task for robots. Currently, existing works achieve good performance in only indoor scenes due to the loss of depth information and scene complexity. In this paper, we present a semantic SLAM framework based on geometric constraint and deep learning models. Specifically, our method is built top on the ORB-SLAM2 system with stereo observation. First, the semantic feature and depth information are acquired respectively using different deep learning models. In this way, multiple views projection is generated to reduce the impact of moving objects for pose estimation. Under the hierarchical rule, the feature points are further refined for SLAM tracking via depth local contrast. Finally, multiple dense 3D maps are created for high-level robot navigation in an incremental updating manner. Our method on public KITTI dataset demonstrates that evaluation metrics of most of sequences improve and achieve state-of-the-art performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI