A hybrid particle swarm optimization and recurrent dynamic neural network for multi-performance optimization of hard turning operation

粒子群优化 人工神经网络 机械加工 表面粗糙度 刀具磨损 计算机科学 多目标优化 过程(计算) 数学优化 刀具 算法 工程类 数学 机械工程 人工智能 材料科学 机器学习 操作系统 复合材料
作者
Vahid Pourmostaghimi,Mohammad Zadshakoyan,Saman Khalilpourazary,Mohammad Ali Badamchizadeh
出处
期刊:Artificial intelligence for engineering design, analysis and manufacturing [Cambridge University Press]
卷期号:36 被引量:14
标识
DOI:10.1017/s0890060422000087
摘要

Abstract In the present work, a new hybrid approach combining particle swarm optimization (PSO) algorithm with recurrent dynamic neural network (RDNN), which is described as PSO-RDNN algorithm, is proposed for multi-performance optimization of machining parameters in finish turning of hardened AISI D2. The suggested optimization problem is solved using the weighted sum technique. Process parameters including cutting speed and feed rate are optimized for minimizing operation cost, maximizing tool life, and producing parts with acceptable surface roughness. Based on experimental results, two neural network models were developed for predicting tool flank wear and surface roughness during the machining process. Based on trained neural networks and structured hybrid algorithm, optimum cutting parameters were obtained. The coefficient of determination for trained neural networks was calculated as R 2 = 0.9893 and R 2 = 0.9879 for predicted flank wear and surface roughness, respectively, which proves the efficiency of trained neural models in real industrial applications. Furthermore, the offered methodology returns a Pareto optimality graph, which represents optimized cutting variables for several various cutting conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mst完成签到,获得积分10
刚刚
Draeck发布了新的文献求助10
刚刚
杀出个黎明举报求助违规成功
1秒前
风中冰香举报求助违规成功
1秒前
哈基米德举报求助违规成功
1秒前
1秒前
科研通AI2S应助Kelly采纳,获得10
2秒前
2秒前
CodeCraft应助MJJJ采纳,获得30
2秒前
3秒前
4秒前
恒恒666发布了新的文献求助10
5秒前
小马甲应助梅陇路小博采纳,获得10
5秒前
知一完成签到,获得积分10
6秒前
充电宝应助五月天采纳,获得30
6秒前
Arthur完成签到 ,获得积分10
6秒前
不安枕头发布了新的文献求助10
7秒前
苹果绝山发布了新的文献求助10
7秒前
8秒前
8秒前
10秒前
田様应助xiu-er采纳,获得10
10秒前
小李发布了新的文献求助10
11秒前
司空悒完成签到,获得积分10
11秒前
12秒前
无极微光应助阿尔卑斯采纳,获得20
13秒前
14秒前
玖颜发布了新的文献求助10
14秒前
英姑应助苹果绝山采纳,获得10
15秒前
义气的友瑶完成签到,获得积分10
15秒前
恒恒666完成签到,获得积分10
17秒前
桐桐应助缘起缘灭采纳,获得10
17秒前
荷月初六发布了新的文献求助10
17秒前
18秒前
领导范儿应助王阳洋采纳,获得10
18秒前
klpkyx完成签到,获得积分10
18秒前
5tcl发布了新的文献求助30
18秒前
Orange应助Draeck采纳,获得10
20秒前
852应助luckly采纳,获得10
24秒前
摸鱼王完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532650
求助须知:如何正确求助?哪些是违规求助? 4621382
关于积分的说明 14577620
捐赠科研通 4561234
什么是DOI,文献DOI怎么找? 2499258
邀请新用户注册赠送积分活动 1479203
关于科研通互助平台的介绍 1450406