Universal Lesion Detection and Classification Using Limited Data and Weakly-Supervised Self-training

计算机科学 跳跃式监视 人工智能 稳健性(进化) 模式识别(心理学) 病变 训练集 机器学习 医学 病理 生物化学 基因 化学
作者
Varun Naga,Tejas Sudharshan Mathai,Angshuman Paul,Ronald M. Summers
出处
期刊:Lecture Notes in Computer Science 卷期号:: 55-64
标识
DOI:10.1007/978-3-031-16760-7_6
摘要

Radiologists identify, measure, and classify clinically significant lesions routinely for cancer staging and tumor burden assessment. As these tasks are repetitive and cumbersome, only the largest lesion is identified leaving others of potential importance unmentioned. Automated deep learning-based methods for lesion detection have been proposed in literature to help relieve their tasks with the publicly available DeepLesion dataset (32,735 lesions, 32,120 CT slices, 10,594 studies, 4,427 patients, 8 body part labels). However, this dataset contains missing lesions, and displays a severe class imbalance in the labels. In our work, we use a subset of the DeepLesion dataset (boxes + tags) to train a state-of-the-art VFNet model to detect and classify suspicious lesions in CT volumes. Next, we predict on a larger data subset (containing only bounding boxes) and identify new lesion candidates for a weakly-supervised self-training scheme. The self-training is done across multiple rounds to improve the model’s robustness against noise. Two experiments were conducted with static and variable thresholds during self-training, and we show that sensitivity improves from 72.5% without self-training to 76.4% with self-training. We also provide a structured reporting guideline through a “Lesions” sub-section for entry into the “Findings” section of a radiology report. To our knowledge, we are the first to propose a weakly-supervised self-training approach for joint lesion detection and tagging in order to mine for under-represented lesion classes in the DeepLesion dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dogged完成签到,获得积分10
刚刚
xxz完成签到,获得积分10
1秒前
joji完成签到,获得积分10
1秒前
追风舞尘完成签到,获得积分10
1秒前
胡小溪完成签到,获得积分10
2秒前
2秒前
pyj完成签到,获得积分10
2秒前
Chandler完成签到,获得积分10
2秒前
2秒前
ly完成签到 ,获得积分10
3秒前
3秒前
sukkei应助ark861023采纳,获得10
3秒前
3秒前
zx完成签到 ,获得积分10
4秒前
小崔读研完成签到 ,获得积分10
4秒前
华仔应助追风舞尘采纳,获得10
4秒前
黑暗与黎明完成签到 ,获得积分10
5秒前
6秒前
Shen完成签到,获得积分10
6秒前
粗暴的涵蕾完成签到,获得积分10
6秒前
6秒前
xdd发布了新的文献求助10
6秒前
千倾完成签到 ,获得积分10
6秒前
HHHHTTTT发布了新的文献求助10
7秒前
yc发布了新的文献求助10
7秒前
8秒前
LeungYM发布了新的文献求助10
8秒前
海绵小方块完成签到,获得积分10
8秒前
持刀的辣条给GH的求助进行了留言
9秒前
9秒前
科目三应助dreamboat采纳,获得10
11秒前
11秒前
12秒前
12秒前
yuyu发布了新的文献求助10
13秒前
Tiffany发布了新的文献求助10
13秒前
orixero应助斯文的傲珊采纳,获得10
13秒前
牛马完成签到,获得积分10
13秒前
14秒前
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804916
求助须知:如何正确求助?哪些是违规求助? 3350009
关于积分的说明 10346893
捐赠科研通 3065849
什么是DOI,文献DOI怎么找? 1683320
邀请新用户注册赠送积分活动 808862
科研通“疑难数据库(出版商)”最低求助积分说明 765093