脚手架
血管生成
体内
诺金
材料科学
生物医学工程
纳米技术
化学
工程类
骨形态发生蛋白
生物
生物化学
癌症研究
基因
生物技术
作者
Wei Tang,Yuanman Yu,Jing Wang,Hui Liu,Haobo Pan,Guocheng Wang,Changsheng Liu
出处
期刊:Biomaterials
[Elsevier]
日期:2019-12-13
卷期号:232: 119645-119645
被引量:68
标识
DOI:10.1016/j.biomaterials.2019.119645
摘要
Preserving the bioactivity of growth factors (GFs) and mimicking their in vivo supply patterns are challenging in the development of GFs-based bone grafts. In this study, we develop a 2-N, 6-O-sulfated chitosan (26SCS) functionalized dual-modular scaffold composed of mesoporous bioactive glass (MBG) with hierarchical porous structures (module I) and GelMA hydrogel columns (module II) in situ fixed in hollowed channels of the module I, which is capable of realizing differentiated delivery modes for osteogenic rhBMP-2 and angiogenic VEGF. A combinational release profile consisting of a high concentration of VEGF initially followed by a decreasing concentration over time, and a slower/sustainable release of rhBMP-2 is realized by immobilizing rhBMP-2 in module I and embedding VEGF in module II. Systematic in vitro and in vivo studies prove that the two coupled processes of osteogenesis and angiogenesis are well-orchestrated and both enhanced ascribed to the specific GFs delivery modes and 26SCS decoration. 26SCS not only enhances the GFs' bioactivity but also decreases antagonism effects of noggin. This study highlights the importance of differentiating the delivery pattern of different GFs and likely sheds light on the future design of growth factor-based bone grafts.
科研通智能强力驱动
Strongly Powered by AbleSci AI