Analysis of LiDAR and Camera Data in Real-World Weather Conditions for Autonomous Vehicle Operations

实时计算 激光雷达 计算机科学 传感器融合 数据质量 雨雪交融 遥感 环境科学 模拟 气象学 工程类 人工智能 地理 运营管理 公制(单位)
作者
Nick Goberville,Mohammad Z. El-Yabroudi,Mark Omwanas,Johan Fanas Rojas,Rick Meyer,Zachary D. Asher,Ikhlas Abdel‐Qader
出处
期刊:SAE International Journal of Advances and Current Practices in Mobility 卷期号:2 (5): 2428-2434 被引量:10
标识
DOI:10.4271/2020-01-0093
摘要

<div class="section abstract"><div class="htmlview paragraph">Autonomous vehicle technology has the potential to improve the safety, efficiency, and cost of our current transportation system by removing human error. With sensors available today, it is possible for the development of these vehicles, however, there are still issues with autonomous vehicle operations in adverse weather conditions (e.g. snow-covered roads, heavy rain, fog, etc.) due to the degradation of sensor data quality and insufficiently robust software algorithms. Since autonomous vehicles rely entirely on sensor data to perceive their surrounding environment, this becomes a significant issue in the performance of the autonomous system. The purpose of this study is to collect sensor data under various weather conditions to understand the effects of weather on sensor data. The sensors used in this study were one camera and one LiDAR. These sensors were connected to an NVIDIA Drive Px2 which operated in a 2019 Kia Niro. Two custom scenarios (static and dynamic objects) were chosen to collect sensor data operating in four real-world weather conditions: fair, cloudy, rainy, and light snow. An algorithm developed herein was used to provide a method of quantifying the data for comparison against the other weather conditions. The results from these performance algorithms show that sensor data quality degrades by an average of 13.88% for static objects and 16.16% for dynamic objects while operating in these conditions, with operations in rain proving to have the most significant effect on sensor data degradation. From this study, it is hypothesized that advancements in data processing algorithms can improve the usability of this degraded data. In future work, we seek to explore fault-tolerant sensor fusion algorithms that can overcome the effects of adverse weather.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Z30GJ8完成签到,获得积分0
刚刚
刚刚
瘦瘦的不尤完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
激动的映冬完成签到,获得积分10
1秒前
冰魂发布了新的文献求助10
1秒前
2秒前
tyzhet完成签到,获得积分10
2秒前
小马甲应助猪猪hero采纳,获得20
2秒前
悲凉的紊完成签到,获得积分20
3秒前
BiuBiuBiu完成签到 ,获得积分10
4秒前
刺桐花下完成签到 ,获得积分10
4秒前
4秒前
校长发布了新的文献求助10
5秒前
5秒前
5秒前
坦率的薯片完成签到,获得积分10
5秒前
坦率访梦完成签到,获得积分10
6秒前
小蘑菇应助okghy采纳,获得10
6秒前
6秒前
黄黄完成签到,获得积分0
6秒前
在水一方应助zyy采纳,获得10
6秒前
悲凉的紊发布了新的文献求助10
6秒前
sherryginyz完成签到,获得积分10
6秒前
英姑应助win采纳,获得10
6秒前
7秒前
7秒前
daliu完成签到,获得积分10
7秒前
充电宝应助pupu采纳,获得10
7秒前
告铭完成签到,获得积分10
8秒前
8秒前
淡定自中发布了新的文献求助10
8秒前
脑洞疼应助daydreamammaking采纳,获得10
9秒前
ygr应助RONG采纳,获得30
9秒前
科研小狗完成签到 ,获得积分10
9秒前
9秒前
xyq完成签到,获得积分10
9秒前
七个丸子完成签到,获得积分10
9秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838196
求助须知:如何正确求助?哪些是违规求助? 3380471
关于积分的说明 10514526
捐赠科研通 3100044
什么是DOI,文献DOI怎么找? 1707291
邀请新用户注册赠送积分活动 821625
科研通“疑难数据库(出版商)”最低求助积分说明 772816