电池(电)
背景(考古学)
阳极
稀缺
计算机科学
航程(航空)
资源(消歧)
阴极
生命周期评估
环境影响评价
工艺工程
材料科学
工作(物理)
汽车工程
储能
能量密度
环境科学
能量(信号处理)
高效能源利用
资源枯竭
发电
可再生能源
能源技术
生化工程
可靠性工程
电势能
发热
机械工程
纳米技术
余热
资源稀缺
泄流深度
电气工程
系统工程
分布式发电
作者
Nicolas Peter Kaiser,Florian Hölting,Duc Minh Nguyen,Martin Börner,M. Junker,Moritz Schütte,Florian Ringbeck,Dirk Uwe Sauer
标识
DOI:10.1002/aenm.202505532
摘要
ABSTRACT The mounting demand for battery cells in the context of the energy transition necessitates evaluation methodologies that extend beyond mere performance metrics. This work presents a multidimensional framework that simultaneously integrates electrical performance, economic costs, and life cycle assessment into a consistent analysis of real and virtual cells. In total 140 cells were modeled, covering commercial chemistries and systematically permuted configurations. The framework enables systematic comparisons of real commercial cells and virtual redesigns by varying cell parameters under consistent boundary conditions without unintended side effects. Ultra high energy cells were generated, achieving very high energy densities under idealized design assumptions. Lithium‐iron‐phosphate (LFP) battery cells exhibit global warming potential values of , while sodium‐ion batteries (SiB) show a slightly higher range of . Depending on housing and anode composition, production costs range from – for LFP and – for SiB. SiB cells achieve mineral resource scarcity values of about , three times lower than lithium‐ion batteries. Cathode chemistry proves decisive for ecological performance, with nickel sulfate‐based precursors showing the highest acidification values and LFP cells showing the lowest. Housing design plays an important role: pouch formats minimize costs and emissions. Systematic permutations show that increasing energy density is a key lever to lower environmental burdens.
科研通智能强力驱动
Strongly Powered by AbleSci AI