A Novel Microwave NDT Technique for Precise Defect Evaluation in Non-Metallic Materials

稳健性(进化) 无损检测 特征提取 可靠性(半导体) 灵敏度(控制系统) 计算机科学 微波食品加热 网格 特征(语言学) 镜头(地质) 声学 电子工程 微波成像 材料科学 振幅 梁(结构) 信号处理 算法 光学 信号(编程语言) 工程类 计算 特征选择
作者
Yi Xie,Yuan Zhao,Feng Xiao Sun,Heng Jia Liu
出处
期刊:Engineering research express [IOP Publishing]
标识
DOI:10.1088/2631-8695/ae370c
摘要

Abstract Microwave non-destructive testing (NDT) is particularly suitable for detecting defects in non-metallic materials due to its ability to penetrate and interact with internal structures. This paper proposes a microwave near-field NDT technique based on a sensor grid scanning method, enhanced by a standard open-ended rectangular waveguide(OERW) equipped with a gradient-index(GRIN) metasurface(MS) lens for beam focusing. The detection algorithm integrates frequency-domain and time-domain analyses of S-parameters to achieve comprehensive defect quantification. Frequency-domain analysis facilitates rapid and efficient measurement of defect lateral dimensions using only the amplitude of S11 at the center frequency, without requiring complex algorithms. To overcome the challenge of extracting longitudinal information, a novel feature extraction algorithm for time-domain S-parameters is developed, enabling precise estimation of defect burial depth. In addition to depth characterization, both simulation and experimental results demonstrate that the loaded lens significantly enhances detection sensitivity and lateral resolution, improving the distinguishability of small or closely spaced defects. In simulations, two groups of defects with 12 different burial depths demonstrated the effectiveness of the proposed feature extraction algorithm for estimating burial depth. To further validate the innovation in time-domain S-parameter analysis, experimental tests were performed using 13 specimens with varying burial depths (5 in Group-I and 8 in Group-II). Linear regression analysis yielded R² values of 96 for Group-I and 0.95 for Group-II, confirming the robustness and reliability of the proposed method in quantitatively detecting defect burial depth. Overall, both simulation and experimental results demonstrate that this technique offers high computational efficiency, eliminates the need for complex imaging algorithms, and represents a meaningful advancement in the detection and evaluation of defects in non-metallic materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
congcong发布了新的文献求助10
1秒前
在水一方应助holly采纳,获得10
1秒前
田田完成签到 ,获得积分10
1秒前
追寻谷兰发布了新的文献求助10
6秒前
6秒前
7秒前
听话的代芙完成签到 ,获得积分10
7秒前
7秒前
Louxuejie发布了新的文献求助10
8秒前
8秒前
Mikey完成签到,获得积分20
8秒前
Accept完成签到,获得积分10
10秒前
11秒前
BK发布了新的文献求助10
12秒前
现代觅珍发布了新的文献求助10
13秒前
10711完成签到,获得积分10
14秒前
16秒前
SAKURA完成签到 ,获得积分10
16秒前
17秒前
自然雁风完成签到,获得积分10
18秒前
LeiYu完成签到 ,获得积分10
18秒前
半壶月色半边天完成签到 ,获得积分10
18秒前
非洲三巨头完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
21完成签到 ,获得积分10
21秒前
xxi发布了新的文献求助10
21秒前
逆风行SXDZ发布了新的文献求助10
22秒前
隔壁小王完成签到,获得积分10
22秒前
科目三应助QinQin采纳,获得10
23秒前
结实灭男发布了新的文献求助10
25秒前
小马甲应助风中怜雪采纳,获得10
25秒前
阳6完成签到 ,获得积分10
25秒前
科研牛马完成签到,获得积分10
26秒前
Owen应助老实白云采纳,获得10
27秒前
现代觅珍完成签到,获得积分10
27秒前
28秒前
所所应助xxi采纳,获得10
29秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637884
求助须知:如何正确求助?哪些是违规求助? 4744268
关于积分的说明 15000613
捐赠科研通 4796097
什么是DOI,文献DOI怎么找? 2562306
邀请新用户注册赠送积分活动 1521844
关于科研通互助平台的介绍 1481714