线粒体
内质网
细胞生物学
蛋白质酪氨酸磷酸酶
磷酸酶
未折叠蛋白反应
肌萎缩侧索硬化
生物
细胞质
化学
神经科学
磷酸化
疾病
医学
内科学
作者
Radu Stoica,Kurt J. De Vos,Sébastien Paillusson,Sarah B. Mueller,Rosa M. Sancho,Kwok‐Fai Lau,Gema Vizcay‐Barrena,Wen-Lang Lin,Ya-Fei Xu,Jada Lewis,Dennis W. Dickson,Leonard Petrucelli,Jacqueline C. Mitchell,Christopher E. Shaw,Christopher C.J. Miller
摘要
Abstract Mitochondria and the endoplasmic reticulum (ER) form tight structural associations and these facilitate a number of cellular functions. However, the mechanisms by which regions of the ER become tethered to mitochondria are not properly known. Understanding these mechanisms is not just important for comprehending fundamental physiological processes but also for understanding pathogenic processes in some disease states. In particular, disruption to ER–mitochondria associations is linked to some neurodegenerative diseases. Here we show that the ER-resident protein VAPB interacts with the mitochondrial protein tyrosine phosphatase-interacting protein-51 (PTPIP51) to regulate ER–mitochondria associations. Moreover, we demonstrate that TDP-43, a protein pathologically linked to amyotrophic lateral sclerosis and fronto-temporal dementia perturbs ER–mitochondria interactions and that this is associated with disruption to the VAPB–PTPIP51 interaction and cellular Ca 2+ homeostasis. Finally, we show that overexpression of TDP-43 leads to activation of glycogen synthase kinase-3β (GSK-3β) and that GSK-3β regulates the VAPB–PTPIP51 interaction. Our results describe a new pathogenic mechanism for TDP-43.
科研通智能强力驱动
Strongly Powered by AbleSci AI