Water at charged interfaces

介观物理学 化学物理 水溶液 纳米技术 基质(水族馆) 实现(概率) 材料科学 生化工程 化学 计算机科学 物理 物理化学 工程类 生态学 统计 数学 量子力学 生物
作者
Grazia Gonella,Ellen H. G. Backus,Yuki Nagata,Douwe Jan Bonthuis,Philip Loche,Alexander Schlaich,Roland R. Netz,Angelika Kühnle,Ian T. McCrum,Marc T. M. Koper,Martin Wolf,Bernd Winter,Gerard Meijer,R. Kramer Campen,Mischa Bonn
出处
期刊:Nature Reviews Chemistry [Nature Portfolio]
卷期号:5 (7): 466-485 被引量:354
标识
DOI:10.1038/s41570-021-00293-2
摘要

The ubiquity of aqueous solutions in contact with charged surfaces and the realization that the molecular-level details of water–surface interactions often determine interfacial functions and properties relevant in many natural processes have led to intensive research. Even so, many open questions remain regarding the molecular picture of the interfacial organization and preferential alignment of water molecules, as well as the structure of water molecules and ion distributions at different charged interfaces. While water, solutes and charge are present in each of these systems, the substrate can range from living tissues to metals. This diversity in substrates has led to different communities considering each of these types of aqueous interface. In this Review, by considering water in contact with metals, oxides and biomembranes, we show the essential similarity of these disparate systems. While in each case the classical mean-field theories can explain many macroscopic and mesoscopic observations, it soon becomes apparent that such theories fail to explain phenomena for which molecular properties are relevant, such as interfacial chemical conversion. We highlight the current knowledge and limitations in our understanding and end with a view towards future opportunities in the field. What do a rock in a river, a red blood cell in our body and the electrodes inside a car battery have in common? Charged surfaces in contact with water. Although a unified approach to study such a variety of systems is not available yet, the current understanding — even with its limitations — paves the road to the development of new concepts and techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenjzhuc发布了新的文献求助200
3秒前
Owen应助believe采纳,获得10
3秒前
tailand发布了新的文献求助30
5秒前
甜甜芾完成签到,获得积分10
5秒前
LXL完成签到,获得积分10
5秒前
故意的鼠标完成签到,获得积分10
6秒前
英俊的铭应助诱导效应采纳,获得10
7秒前
7秒前
9527完成签到,获得积分10
8秒前
JamesPei应助小璐璐呀采纳,获得10
9秒前
9秒前
科研助理完成签到 ,获得积分10
9秒前
9秒前
10秒前
千葉完成签到,获得积分20
10秒前
11秒前
怕黑的纸鹤完成签到,获得积分10
11秒前
李健应助阿程采纳,获得10
12秒前
细腻的深白完成签到,获得积分10
12秒前
零零完成签到,获得积分10
13秒前
13秒前
13秒前
熠烁发布了新的文献求助10
13秒前
三千完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
16秒前
16秒前
田様应助Nat采纳,获得10
16秒前
斯文败类应助omoily采纳,获得30
17秒前
充电宝应助poopy采纳,获得10
17秒前
17秒前
斯文败类应助李曜宇采纳,获得10
17秒前
19秒前
19秒前
tailand完成签到,获得积分20
19秒前
咩咩羊发布了新的文献求助10
19秒前
科研牛马发布了新的文献求助10
20秒前
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783767
求助须知:如何正确求助?哪些是违规求助? 3329032
关于积分的说明 10239459
捐赠科研通 3044440
什么是DOI,文献DOI怎么找? 1671011
邀请新用户注册赠送积分活动 800001
科研通“疑难数据库(出版商)”最低求助积分说明 759172