Cloud-Based Data Integration Between Geology & Drilling Software Using Python Tools

Python(编程语言) 工作流程 云计算 计算机科学 软件 数据集成 软件工程 数据库 操作系统
作者
Peter Levison Mwansa,B. Hernandez,S. Grebe,Mohamed Ali Hassan,A. Torsæter,F. Jenssen
出处
期刊:SPE/IADC Middle East Drilling Technology Conference and Exhibition
标识
DOI:10.2118/214593-ms
摘要

Abstract The oil and gas industry generates vast amounts of data throughout its operations, from exploration to production. Collecting, connecting, and optimally utilizing this data is key to maximizing efficiency, accuracy, and access to new disruptive technologies. In a typical well-planning cycle, an engineer will spend significant amount of time looking for the data they require to do their jobs efficiently. The data are typically locked away in silos - trajectories in one data platform, Pore Pressure Gradient, Fracture Gradient or Targets in another, and so on. A major Middle Eastern NOC and Two Norwegian software service companies teamed up to develop Proof of Concept (PoC) for a new workflow that integrates subsurface and drilling data between on-premises Geology E&P software and Drilling software through a proprietary Python Tool plug-in and Python library. This integration enables a streamlined connection to a cloud-based drilling and well planning software, facilitating collaboration among teams involved in well planning. The project's key challenges are the lack of a standardized communication, integration, and automation of data flows between subsurface and drilling teams, as well as the inability of engineers to access necessary data due to scattered information and access restrictions. The project utilizes a proprietary data science suite, named Cegal's Prizm, which allows easy configuration to integrate data from various applications, sources, and platforms. A proprietary Python Tool is used to merge data from various application silos and data sources, enabling enriched investigation. The process involves connecting to the Geology E&P software retrieving domain objects using the proprietary Python Tool, and converting these domain data objects into common Python data structures. The project aims to develop an innovative workflow that provides easier access to data for experts throughout the organization, leading to better decision-making during the well-planning cycle. This not only makes it easier, but it also ensures collaboration between the G&G and Drilling teams involved in new well planning

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
深情安青应助arsenal采纳,获得10
1秒前
2秒前
NUS完成签到,获得积分10
2秒前
单身的淇完成签到 ,获得积分10
3秒前
4秒前
tianfu1899发布了新的文献求助10
6秒前
科研通AI6应助大气凝云采纳,获得10
7秒前
fangruofuyun完成签到,获得积分10
8秒前
雨竹发布了新的文献求助10
8秒前
9秒前
冯洄完成签到 ,获得积分20
9秒前
10秒前
10秒前
张大快乐发布了新的文献求助10
13秒前
hhh123完成签到,获得积分10
13秒前
小谢发布了新的文献求助10
14秒前
14秒前
雨天完成签到,获得积分10
14秒前
arsenal发布了新的文献求助10
15秒前
MessySDJ完成签到 ,获得积分10
15秒前
学术蝗虫发布了新的文献求助10
16秒前
高兴的故事完成签到,获得积分10
16秒前
16秒前
yyyy完成签到,获得积分10
17秒前
孤傲的静脉完成签到 ,获得积分10
18秒前
赘婿应助wby采纳,获得50
18秒前
大梦发布了新的文献求助10
18秒前
冯洄关注了科研通微信公众号
19秒前
小二郎应助泥蝶采纳,获得10
20秒前
共享精神应助yy采纳,获得10
20秒前
21秒前
tt完成签到,获得积分10
21秒前
22秒前
勤恳马里奥完成签到,获得积分0
25秒前
科研通AI6应助张大快乐采纳,获得10
26秒前
大梦完成签到,获得积分10
27秒前
Z_mzse完成签到,获得积分20
27秒前
28秒前
mjw完成签到,获得积分10
30秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499570
求助须知:如何正确求助?哪些是违规求助? 4596391
关于积分的说明 14454281
捐赠科研通 4529548
什么是DOI,文献DOI怎么找? 2482060
邀请新用户注册赠送积分活动 1466041
关于科研通互助平台的介绍 1438891