已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Childhood trauma and recent stressors in predicting subclinical psychotic symptoms among Chinese university students in southwest China: a machine learning analysis within a gender-specific framework

心理学 多重共线性 临床心理学 压力源 心理健康 管理层 焦虑 机器学习 精神科 回归分析 计算机科学
作者
Wanjie Tang,Z. Y. Deng,Zeyuan Sun,Qijun Zhao,Miguel Garcia‐Argibay,Kadan Anoop,Tao Hu,Shuang Xue,Natali Bozhilova,Aldo Alberto Conti,Steve Lukito,Siqi Wu,Gang Wang,Jin Chun-han,Changjian Qiu,Qiaolan Liu,Jay Pan,Samuele Cortese,Katya Rubia
标识
DOI:10.1136/bmjment-2025-301761
摘要

Background Subclinical psychotic symptoms (SPS) are common among college students and can lead to future mental health issues. However, it is still not clear which specific childhood trauma, stressors and health factors lead to SPSs, partly due to confounding factors and multicollinearity. Objective To use machine learning to find the main predictors of SPS among university students, with special attention to gender differences. Methods A total of 21 208 university students were surveyed regarding SPS and a wide range of stress-related factors, including academic pressure, interpersonal difficulties and abuse. Nine machine learning models were used to predict SPS. We examined the relationship between SPS and individual stressors using χ 2 tests, multicollinearity analysis and Pearson heatmaps. Feature engineering, t-distributed stochastic neighborhood embedding (t-SNE) and Shapley Additive Explanation values helped identify the most important predictors. We also assessed calibration with calibration curves and Brier scores, and evaluated clinical usefulness with decision curve analysis (DCA) to provide a thorough assessment of the models. In addition, we validated this model using independent external data. Findings The Extreme Gradient Boosting (XGBoost) model had the best prediction results, with an Area Under the Curve (AUC) of 0.89, and validated with external data. It also showed good calibration, and DCA indicated clear clinical benefit. Interpersonal difficulties, academic pressure and emotional abuse emerged as the strongest predictors of SPS. Gender-stratified analyses revealed that academic pressure and emotional abuse affected males more, while health issues like chest pain and menstrual pain were stronger predictors for females. Conclusions Machine learning models effectively identified key stressors associated with SPS in university students. These findings highlight the importance of gender-sensitive approaches for the early detection and prevention of psychotic symptoms. Clinical implications SPSs in college students can be predicted by interpersonal difficulties, academic stress and childhood emotional abuse. This information can help mental health professionals develop better ways to prevent and address SPSs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ferry发布了新的文献求助10
2秒前
瓜i发布了新的文献求助10
3秒前
科研通AI6应助jiahuilai采纳,获得10
3秒前
成就念芹完成签到,获得积分10
5秒前
moji发布了新的文献求助10
5秒前
Ferry完成签到,获得积分10
7秒前
zxx发布了新的文献求助10
7秒前
香蕉千风完成签到 ,获得积分10
8秒前
9秒前
9秒前
Owen应助花城诚成采纳,获得10
11秒前
Kolalone发布了新的文献求助10
12秒前
云影箫羽完成签到 ,获得积分10
13秒前
LSQ完成签到 ,获得积分10
13秒前
wubin69发布了新的文献求助10
13秒前
riverflowing发布了新的文献求助10
15秒前
科研通AI6应助刻苦鸭子采纳,获得30
15秒前
情怀应助yiner520采纳,获得10
15秒前
科研通AI5应助lpc采纳,获得10
15秒前
17秒前
幸运星发布了新的文献求助10
19秒前
NexusExplorer应助齐欢采纳,获得10
21秒前
22秒前
22秒前
哩哩完成签到 ,获得积分10
22秒前
爆米花应助zxx采纳,获得10
23秒前
25秒前
害羞的傲霜完成签到,获得积分10
25秒前
微笑的天抒完成签到,获得积分10
25秒前
紫菜完成签到,获得积分10
25秒前
26秒前
lpc发布了新的文献求助10
28秒前
庞寅杰发布了新的文献求助10
30秒前
30秒前
ytg922发布了新的文献求助10
31秒前
luxia完成签到 ,获得积分10
31秒前
31秒前
QQ发布了新的文献求助10
33秒前
丘比特应助错觉1采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4651527
求助须知:如何正确求助?哪些是违规求助? 4038736
关于积分的说明 12492403
捐赠科研通 3728953
什么是DOI,文献DOI怎么找? 2058251
邀请新用户注册赠送积分活动 1088986
科研通“疑难数据库(出版商)”最低求助积分说明 970024