亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Leveraging UAV Data and Deep Learning Models for Detecting Waste in Rivers

计算机科学 深度学习 数据建模 人工智能 机器学习 数据库
作者
Bipun Man Pati,Bishnu Kumar Khadka,Ukesh Thapa,Sanjoy Kumar Pal,S. R. Sakya,Anup Shrestha,Hemant Joshi,Dhiraj Pyakurel,Pascale Le Roy
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:13: 99603-99627
标识
DOI:10.1109/access.2025.3576295
摘要

The growing problem of riverine waste pollution threatens water sustainability in Nepal, which is driven largely by rapid urban development and inadequate waste management. This study presents the first comparative evaluation of object detection and segmentation models for automated waste detection using novel UAV-captured imagery datasets. We introduce four datasets, two for object detection and two for segmentation in the Bishnumati and Bagmati rivers. We evaluated three training strategies—training from scratch, full-model fine-tuning, and fine-tuning with frozen layers—and assessed model generalizability through cross-river transfer learning. The study showed that fine-tuning pretrained weights is a better approach for training segmentation models, whereas freezing pretrained backbone layers is better for object detection. DeepLabv3+, trained by fine-tuning pretrained models, performed better than object detection models for waste detection, with precision and recall scores of 0.915 and 0.934 for Bagmati, and 0.913 and 0.939 for Bishnumati. Furthermore, transfer learning across locations improves object detection mAP scores and refines segmentation mask predictions, thereby uncovering previously undetected waste items. The transfer learning fine-tuned DeepLabv3+ model obtained an mIoU score of 0.849 for Bagmati to Bishnumati and 0.841 for Bishnumati to Bagmati transfer learning. Our novel datasets and methodological blueprint for optimizing deep learning training strategies in riverine environments offer a scalable and adaptable pipeline for automated waste monitoring in riverine environments, particularly for regions with limited surveying infrastructure and geographically proximate rivers where transfer learning can be effectively applied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助吴迪采纳,获得10
21秒前
华仔应助小饶采纳,获得10
24秒前
28秒前
32秒前
32秒前
35秒前
吴迪发布了新的文献求助10
39秒前
Fairy完成签到,获得积分10
46秒前
英姑应助酷酷的大米采纳,获得10
51秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
过时的姿发布了新的文献求助10
1分钟前
Becky完成签到 ,获得积分10
1分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
sakura发布了新的文献求助10
4分钟前
小饶发布了新的文献求助10
4分钟前
时间煮雨我煮鱼完成签到,获得积分10
4分钟前
5分钟前
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
5分钟前
poki完成签到 ,获得积分10
5分钟前
paradox完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
酷酷的大米完成签到,获得积分10
5分钟前
小糊涂仙儿完成签到 ,获得积分10
5分钟前
精明浩然应助gtgyh采纳,获得10
5分钟前
volunteer完成签到 ,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
852应助StonesKing采纳,获得10
7分钟前
8分钟前
阳光的丹雪完成签到,获得积分10
8分钟前
凡舍完成签到 ,获得积分10
8分钟前
syalonyui发布了新的文献求助10
8分钟前
9分钟前
完美世界应助科研通管家采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603317
求助须知:如何正确求助?哪些是违规求助? 4688370
关于积分的说明 14853520
捐赠科研通 4690329
什么是DOI,文献DOI怎么找? 2540661
邀请新用户注册赠送积分活动 1507001
关于科研通互助平台的介绍 1471609