Operative or Nonoperative Treatment is Predicted Accurately for Patients Who Have Hip Complaints Consulting an Orthopedic Surgeon Using Machine Learning Algorithms Trained With Prehospital Acquired History-Taking Data

医学 骨科手术 物理疗法 前瞻性队列研究 算法 外科 计算机科学
作者
Walter van der Weegen,Tristan Warren,Dirk Das,Rintje Agricola,Thomas Timmers,M. Siebelt
出处
期刊:Journal of Arthroplasty [Elsevier BV]
卷期号:39 (5): 1173-1177.e6 被引量:2
标识
DOI:10.1016/j.arth.2023.11.022
摘要

Abstract

Background

Increasing numbers of patients suffering from hip osteoartritis will lead to increased orthopaedic health care consumption. Artificial intelligence might alleviate this problem, but its efficacy is rarely tested in clinical practice. Machine learning (ML) might optimize orthopaedic consultation workflow by predicting treatment strategy (non-operative or operative) prior to consultation. The purpose of this study was to assess ML prediction accuracy by comparing ML predictions to the outcome of clinical consultations.

Methods

In this prospective clinical cohort study, adult patients referred for hip complaints between January 20th to February 20th 2023 were included. Prior to in-hospital consultation, patients completed a computer-assisted history taking (CAHT) form. Using these CAHT answers, a ML-algorithm predicted non-operative or operative treatment outcome before consultation. During consultation, orthopaedic surgeons and physician assistants were blinded to the prediction in 90 and unblinded in 29 cases. Consultation outcome (non-operative or operative) was compared to ML treatment prediction for all cases, and for blinded and unblinded conditions separately. Analysis was done on 119 consultations.

Results

Overall treatment strategy prediction was correct in 101 cases (accuracy 85%, P<0.0001). Non-operative treatment prediction (n=71) was 97% correct versus 67% for operative treatment prediction (n=48). Results from unblinded consultations (86.2% correct predictions,) were not statistically different from blinded consultations (84.4% correct, P>0.05).

Conclusion

Machine Learning algorithms can predict non-operative or operative treatment for patients with hip complaints with high accuracy. This could facilitate scheduling of non-operative patients with physician assistants, and operative patients with orthopaedic surgeons including direct access to pre-operative screening, thereby optimizing usage of health care resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执梳完成签到 ,获得积分10
1秒前
qqq完成签到 ,获得积分10
2秒前
冷静的奇迹完成签到,获得积分10
2秒前
hhhhxxxx完成签到,获得积分10
2秒前
superhero完成签到,获得积分10
3秒前
4秒前
无语的小熊猫完成签到 ,获得积分10
5秒前
kk完成签到 ,获得积分10
7秒前
10秒前
吴1发布了新的文献求助10
11秒前
大方百招完成签到,获得积分10
14秒前
上善若水发布了新的文献求助10
14秒前
16秒前
16秒前
元气蛋完成签到,获得积分10
17秒前
yang应助现代书雪采纳,获得10
19秒前
19秒前
顺其自然完成签到 ,获得积分10
20秒前
21秒前
安详的惜梦完成签到 ,获得积分10
21秒前
坚强枫发布了新的文献求助10
21秒前
小蘑菇应助小菡菡采纳,获得10
25秒前
上善若水完成签到,获得积分10
25秒前
大气问枫发布了新的文献求助10
25秒前
qaplay完成签到 ,获得积分0
25秒前
赵赵完成签到,获得积分10
29秒前
可爱千兰完成签到,获得积分10
30秒前
火星上送终完成签到,获得积分10
32秒前
传统的斓完成签到,获得积分10
33秒前
35秒前
可爱大地关注了科研通微信公众号
36秒前
zhy完成签到,获得积分10
40秒前
dddd发布了新的文献求助10
40秒前
不做科研完成签到,获得积分20
42秒前
水晶李完成签到 ,获得积分10
43秒前
鳗鱼歌曲完成签到,获得积分10
46秒前
肖果完成签到 ,获得积分10
47秒前
余味应助小宋采纳,获得10
49秒前
科研通AI2S应助wxh采纳,获得10
51秒前
莫愁一舞完成签到,获得积分10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779439
求助须知:如何正确求助?哪些是违规求助? 3324973
关于积分的说明 10220672
捐赠科研通 3040111
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522