已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Generation of imagery-derived texture features for material discrimination

纹理(宇宙学) 人工智能 计算机科学 计算机视觉 图像纹理 模式识别(心理学) 图像(数学) 图像分割
作者
Michael Brogden,Patrick J. Cocola,Robert F. Schaffer,Harry Haas,Ronald A. Krauss
标识
DOI:10.1117/12.3013457
摘要

The Transportation Security Laboratory (TSL) conducts thorough assessments of explosives detection systems (EDSs), encompassing a wide range of explosive materials and hazardous substances. When necessary, inert simulants are employed, but they undergo a stringent verification process to accurately replicate specific properties of threat materials. Whether developed by the TSL or commercially acquired, simulants must undergo verification testing to ensure they mirror the desired threat properties. Historically, these assessments relied on rudimentary metrics like average density and effective atomic number, lacking insight into structural properties possibly being exploited by machine learning detection algorithms. Initial research focused on expanding the verification process by incorporating texture metrics extracted from computed tomography (CT) imagery aimed at deriving features that machine learning detection algorithms might also be utilizing. Two avenues of analysis were devised; first, we calculated 22 metrics through statistical analysis of pixel-based grayscale data, and second, we utilized a convolutional neural network (CNN) to classify images. Both of these methods were subsequently refined and are reported in this work. We augmented the number of metrics for the statistical analysis from 22 to 112, and within the CNN framework we harnessed the flattened array originating from the fully connected layer as a feature map. In both processes the analysis transitioned from a 2-dimensional to a 3-dimensional approach. We assessed the effectiveness of both procedures by testing them on imagery of 50 various materials, such as powders, liquids, putties, and emulsions, using Linear Discriminant Analysis (LDA) to evaluate their ability to distinguish between different materials. Finally, Principal Component Analysis (PCA) loadings were used to define 2-dimensional tolerance intervals for comparisons with loadings from other materials as a way to enhance the current simulant quality control process, ultimately improving the robustness of simulants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
带虾的烧麦完成签到,获得积分10
刚刚
三番发布了新的文献求助10
1秒前
1秒前
shangxinyu完成签到,获得积分20
2秒前
3秒前
山山完成签到 ,获得积分10
3秒前
4秒前
清秀芝麻完成签到 ,获得积分10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
jcl完成签到,获得积分10
7秒前
天天快乐应助palmer采纳,获得10
8秒前
陶陶子发布了新的文献求助10
8秒前
善学以致用应助lin采纳,获得10
9秒前
YJ888发布了新的文献求助10
10秒前
13秒前
冷艳妙柏完成签到,获得积分10
13秒前
15秒前
Emma发布了新的文献求助10
20秒前
风趣的天问完成签到 ,获得积分10
21秒前
21秒前
21秒前
田田发布了新的文献求助10
22秒前
狐金华发布了新的文献求助10
25秒前
25秒前
26秒前
fishss完成签到 ,获得积分0
27秒前
Linos应助糊涂涂采纳,获得10
27秒前
Emma完成签到,获得积分10
30秒前
palmer发布了新的文献求助10
30秒前
tzl发布了新的文献求助30
33秒前
zyj完成签到,获得积分10
34秒前
小马甲应助权翼采纳,获得10
35秒前
LJY完成签到 ,获得积分10
36秒前
41秒前
岚岚完成签到,获得积分10
41秒前
了了完成签到 ,获得积分10
42秒前
42秒前
权翼发布了新的文献求助10
47秒前
HYQ完成签到 ,获得积分10
47秒前
福斯卡完成签到 ,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542985
求助须知:如何正确求助?哪些是违规求助? 4629125
关于积分的说明 14610877
捐赠科研通 4570403
什么是DOI,文献DOI怎么找? 2505738
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454361