亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-enabled fully automated pipeline system for segmentation and classification of single-mass breast lesions using contrast-enhanced mammography: a prospective, multicentre study

医学 乳腺摄影术 乳房成像 前瞻性队列研究 医学物理学 分割 放射科 接收机工作特性 人工智能 乳腺癌 外科 内科学 癌症 计算机科学
作者
Tiantian Zheng,Fan Lin,Xianglin Li,Tongpeng Chu,Jing Gao,Shijie Zhang,Ziyin Li,Yajia Gu,Simin Wang,Feng Zhao,Heng Ma,Haizhu Xie,Cong Xu,Haicheng Zhang,Ning Mao
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:58: 101913-101913 被引量:29
标识
DOI:10.1016/j.eclinm.2023.101913
摘要

Breast cancer is the leading cause of cancer-related deaths in women. However, accurate diagnosis of breast cancer using medical images heavily relies on the experience of radiologists. This study aimed to develop an artificial intelligence model that diagnosed single-mass breast lesions on contrast-enhanced mammography (CEM) for assisting the diagnostic workflow.A total of 1912 women with single-mass breast lesions on CEM images before biopsy or surgery were included from June 2017 to October 2022 at three centres in China. Samples were divided into training and validation sets, internal testing set, pooled external testing set, and prospective testing set. A fully automated pipeline system (FAPS) using RefineNet and the Xception + Pyramid pooling module (PPM) was developed to perform the segmentation and classification of breast lesions. The performances of six radiologists and adjustments in Breast Imaging Reporting and Data System (BI-RADS) category 4 under the FAPS-assisted strategy were explored in pooled external and prospective testing sets. The segmentation performance was assessed using the Dice similarity coefficient (DSC), and the classification was assessed using heatmaps, area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. The radiologists' reading time was recorded for comparison with the FAPS. This trial is registered with China Clinical Trial Registration Centre (ChiCTR2200063444).The FAPS-based segmentation task achieved DSCs of 0.888 ± 0.101, 0.820 ± 0.148 and 0.837 ± 0.132 in the internal, pooled external and prospective testing sets, respectively. For the classification task, the FAPS achieved AUCs of 0.947 (95% confidence interval [CI]: 0.916-0.978), 0.940 (95% [CI]: 0.894-0.987) and 0.891 (95% [CI]: 0.816-0.945). It outperformed radiologists in terms of classification efficiency based on single lesions (6 s vs 3 min). Moreover, the FAPS-assisted strategy improved the performance of radiologists. BI-RADS category 4 in 12.4% and 13.3% of patients was adjusted in two testing sets with the assistance of FAPS, which may play an important guiding role in the selection of clinical management strategies.The FAPS based on CEM demonstrated the potential for the segmentation and classification of breast lesions, and had good generalisation ability and clinical applicability.This study was supported by the Taishan Scholar Foundation of Shandong Province of China (tsqn202211378), National Natural Science Foundation of China (82001775), Natural Science Foundation of Shandong Province of China (ZR2021MH120), and Special Fund for Breast Disease Research of Shandong Medical Association (YXH2021ZX055).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
wjjjjjjj发布了新的文献求助10
11秒前
852应助胖哥采纳,获得10
12秒前
18秒前
mashibeo完成签到,获得积分10
38秒前
1分钟前
小小蟋蟀发布了新的文献求助50
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
Hayat应助科研通管家采纳,获得10
1分钟前
1分钟前
胖哥发布了新的文献求助10
1分钟前
1分钟前
linhi发布了新的文献求助10
2分钟前
lbl完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
小小蟋蟀完成签到,获得积分10
2分钟前
甜蜜发带完成签到 ,获得积分0
2分钟前
万能图书馆应助胖哥采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
小齐发布了新的文献求助10
4分钟前
4分钟前
Hayat应助水上汀州采纳,获得10
4分钟前
4分钟前
4分钟前
小向完成签到,获得积分20
5分钟前
5分钟前
5分钟前
情怀应助科研通管家采纳,获得20
5分钟前
5分钟前
Melody发布了新的文献求助10
5分钟前
和风完成签到 ,获得积分10
6分钟前
Melody关注了科研通微信公众号
6分钟前
李桃子发布了新的文献求助10
6分钟前
6分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4060956
求助须知:如何正确求助?哪些是违规求助? 3599511
关于积分的说明 11432204
捐赠科研通 3323539
什么是DOI,文献DOI怎么找? 1827301
邀请新用户注册赠送积分活动 897914
科研通“疑难数据库(出版商)”最低求助积分说明 818699