清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

3-D Object Detection for Multiframe 4-D Automotive Millimeter-Wave Radar Point Cloud

激光雷达 点云 雷达 符号 目标检测 算法 人工智能 计算机科学 对象(语法) 数学 物理 光学 电信 模式识别(心理学) 算术
作者
Bin Tan,Zhixiong Ma,Xichan Zhu,Sen Li,Lianqing Zheng,Sihan Chen,Libo Huang,Jie Bai
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (11): 11125-11138 被引量:50
标识
DOI:10.1109/jsen.2022.3219643
摘要

Object detection is a crucial task in autonomous driving. Currently, object-detection methods for autonomous driving systems are primarily based on information from cameras and light detection and ranging (LiDAR), which may experience interference from complex lighting or poor weather. At present, the 4-D ( ${x}$ , ${y}$ , ${z}$ , ${v}$ millimeter-wave radar can provide a denser point cloud to achieve 3-D object-detection tasks that are difficult to complete with traditional millimeter-wave radar. Existing 3-D object point-cloud-detection algorithms are mostly based on 3-D LiDAR; these methods are not necessarily applicable to millimeter-wave radars, which have sparser data and more noise and include velocity information. This study proposes a 3-D object-detection framework based on a multiframe 4-D millimeter-wave radar point cloud. First, the ego vehicle velocity information is estimated by the millimeter-wave radar, and the relative velocity information of the millimeter-wave radar point cloud is compensated for the absolute velocity. Second, by matching between millimeter-wave radar frames, the multiframe millimeter-wave radar point cloud is matched to the last frame. Finally, the object is detected by the proposed multiframe millimeter-wave radar point-cloud-detection network. Experiments are performed using our newly recorded TJ4DRadSet dataset in a complex traffic environment. The results showed that the proposed object-detection framework outperformed the comparison methods based on the 3-D mean average precision. The experimental results and methods can be used as the baseline for other multiframe 4-D millimeter-wave radar-detection algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
矢思然完成签到,获得积分10
3秒前
跳跃的鹏飞完成签到 ,获得积分10
4秒前
capricorn发布了新的文献求助10
4秒前
kuyi完成签到 ,获得积分10
18秒前
Sunsheng应助科研通管家采纳,获得10
19秒前
俊逸的白梦完成签到 ,获得积分0
23秒前
capricorn完成签到,获得积分10
35秒前
xmfffff完成签到,获得积分10
42秒前
短巷完成签到 ,获得积分10
47秒前
59秒前
bill完成签到,获得积分10
1分钟前
桐桐应助iorpi采纳,获得10
1分钟前
JamesPei应助qinghong采纳,获得10
1分钟前
1分钟前
幽默滑板完成签到,获得积分10
1分钟前
Alandia完成签到 ,获得积分10
2分钟前
capvirgo完成签到 ,获得积分10
2分钟前
theo完成签到 ,获得积分10
2分钟前
whuhustwit完成签到,获得积分10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
cdercder应助科研通管家采纳,获得20
2分钟前
2分钟前
iorpi发布了新的文献求助10
2分钟前
nano完成签到 ,获得积分10
3分钟前
笨笨完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
fogsea完成签到,获得积分0
4分钟前
mojomars完成签到,获得积分10
4分钟前
4分钟前
悠明夜月完成签到 ,获得积分10
4分钟前
4分钟前
lhl完成签到,获得积分10
4分钟前
xue完成签到 ,获得积分10
4分钟前
肉丸完成签到 ,获得积分10
5分钟前
zzgpku完成签到,获得积分0
5分钟前
5分钟前
感动依霜完成签到 ,获得积分10
5分钟前
妇产科医生完成签到 ,获得积分10
5分钟前
杜康完成签到,获得积分10
5分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837565
求助须知:如何正确求助?哪些是违规求助? 3379667
关于积分的说明 10510096
捐赠科研通 3099269
什么是DOI,文献DOI怎么找? 1707029
邀请新用户注册赠送积分活动 821402
科研通“疑难数据库(出版商)”最低求助积分说明 772615