MFMCNS: a multi-feature and multi-classifier network-based system for ransomworm detection

恶意软件 计算机科学 勒索软件 分类器(UML) 有效载荷(计算) 僵尸网络 数据挖掘 加密 寄主(生物学) 人工智能 计算机安全 互联网 操作系统 网络数据包 生态学 生物
作者
Ahmad O. Almashhadani,Domhnall Carlin,Mustafa Kaiiali,Sakir Sezer
出处
期刊:Computers & Security [Elsevier]
卷期号:121: 102860-102860 被引量:21
标识
DOI:10.1016/j.cose.2022.102860
摘要

Ransomware is a type of advanced malware that can encrypt a user's files or lock a computer system until a ransom has been paid. Ransomworm is a type of malware that combines the payload of ransomware with the propagation feature of a computer worm. Most host-based detection methods require the host to be infected and the payload to be executed first to be able to identify anomalies and detect the malware. By the time of infection, it might too late as some of the system's assets would have been already encrypted or exfiltrated by the malware. On the contrary, the network-based methods can be one of the crucial means in detecting ransomworm activities when it attempts to spread to infect other networks before executing the payload. Therefore, a thorough analysis of ransomworm network traffic can be one of the essential means for early detection. This paper presents a comprehensive behavioral analysis of ransomworm network traffic, taking WannaCry, which launched a worldwide cyberattack, and NotPetya as a case study. Two sets of related features were extracted based on two independent flow levels: session-based and time-based. On top of each set, an independent classifier was built. Moreover, to improve the reliability, a multi-feature and multi-classifier network-based system, MFMCNS, has been proposed. MFMCNS employs these classifiers working in parallel on different flow levels, then it adopts a fusion rule to combine the classifiers' decisions. The experimental results prove that MFMCNS is reliable and has high detection accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cjzj发布了新的文献求助10
刚刚
十一完成签到,获得积分20
刚刚
王人捷完成签到,获得积分20
刚刚
zilan发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
领导范儿应助ccz采纳,获得10
1秒前
2秒前
ouya发布了新的文献求助10
4秒前
追寻清完成签到,获得积分10
4秒前
4秒前
生动夏青发布了新的文献求助10
4秒前
4秒前
ramia完成签到 ,获得积分10
5秒前
5秒前
瓶里岑发布了新的文献求助10
6秒前
科研通AI2S应助Solkatt采纳,获得10
6秒前
7秒前
caigou发布了新的文献求助10
7秒前
Jodie发布了新的文献求助200
7秒前
浮游应助自由大叔采纳,获得10
8秒前
曹文强完成签到,获得积分10
9秒前
董小妍完成签到 ,获得积分10
9秒前
9秒前
小二郎应助整齐的泥猴桃采纳,获得10
9秒前
auraro发布了新的文献求助10
9秒前
10秒前
HJJHJH发布了新的文献求助10
10秒前
mc完成签到,获得积分20
10秒前
10秒前
残酷月光完成签到,获得积分10
11秒前
科研通AI6应助Kate采纳,获得10
12秒前
orixero应助柳青采纳,获得10
13秒前
yyds应助mc采纳,获得50
13秒前
yoga发布了新的文献求助10
13秒前
安白枫完成签到,获得积分10
13秒前
13秒前
科研摆渡人完成签到,获得积分10
13秒前
共渡发布了新的文献求助10
14秒前
顾念完成签到 ,获得积分10
14秒前
懦弱的妙彤完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556625
求助须知:如何正确求助?哪些是违规求助? 4641429
关于积分的说明 14665012
捐赠科研通 4583214
什么是DOI,文献DOI怎么找? 2514041
邀请新用户注册赠送积分活动 1488544
关于科研通互助平台的介绍 1459189