复合数
电解质
材料科学
无定形固体
硫化物
图层(电子)
金属
锂(药物)
化学工程
快离子导体
原位
无机化学
电池(电)
锂电池
金属锂
复合材料
电极
纳米技术
化学
离子
离子键合
冶金
物理化学
有机化学
结晶学
功率(物理)
内分泌学
工程类
物理
医学
量子力学
作者
Chen Lai,Chengyong Shu,Wei Li,Liu Wang,Xiaowei Wang,Tianran Zhang,Xuesong Yin,Iqbal Ahmad,Mingtao Li,Xiaolu Tian,Yang Pu,Wei Tang,Naihua Miao,Guangyuan Zheng
出处
期刊:Nano Letters
[American Chemical Society]
日期:2020-10-27
卷期号:20 (11): 8273-8281
被引量:61
标识
DOI:10.1021/acs.nanolett.0c03395
摘要
A novel strategy has been proposed to produce in situ Li2S at the interfacial layer between lithium anode and the solid electrolyte, by using an amorphous-sulfide-LiTFSI-poly(vinylidene difluoride) (PVDF) composite solid electrolyte (SLCSE). Besides retarding the decomposition of PVDF in CSE, the Li2S-modified interfacial layer (SMIL) also improves the wettability between lithium metal and SLCSE which in turn optimizes the lithium deposition process. Our density functional theory calculation results reveal that the migration energy barrier of Li passing through SMIL is much lower than that of Li passing through LiF-modified interfacial layer (FMIL) formed from the decomposition of PVDF. The as-prepared SLCSE shows a Li ionic transference number of 0.44 and Li ion conductivity of 3.42 × 10-4 S/cm at room temperature, and the Li||SLCSE||LiFePO4 cell exhibits an outstanding rate performance with a capacity of 153, 144, 131, and 101 mAh/g at a current density of 0.05, 0.10, 0.25, and 0.50 mA/cm2, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI