Computing the Stochastic Dynamics of Phosphorylation Networks

计算机科学 磷酸化 系统生物学 随机过程 网络动力学 随机建模 光学(聚焦) 计算 级联 生物系统 数学 化学 生物信息学 生物 算法 物理 光学 离散数学 统计 生物化学 色谱法
作者
Marvin Steijaert,J.H.K. Van Den Brink,Anthony Liekens,P.A.J. Hilbers,Huub M. M. ten Eikelder
出处
期刊:Journal of Computational Biology [Mary Ann Liebert, Inc.]
卷期号:17 (2): 189-199 被引量:4
标识
DOI:10.1089/cmb.2009.0059
摘要

Cells of all organisms share the ability to respond to various extracellular signals. Depending on the cell type and the organism, these signals may include hormones secreted by other cells or changes in nutrient concentrations. The signals are processed by an intricate network of protein-protein interactions, including phosphorylation and de-phosphorylation events. As some signaling proteins are only present in low concentrations, random fluctuations may affect the dynamics of the network. The mathematical modeling of networks with significant random fluctuations requires the use of stochastic methods. The stochastic dynamics of a chemical reaction system are described by the Chemical Master Equation. Often the numerical evaluation of this equation is problematic. The first problem is that many systems have an infinite number of possible states; leaving simulations of individual trajectories as the only alternative. To circumvent this problem, we focus on a class of systems that have a finite state space. More specifically, we focus on networks of phosphorylation cycles without taking into account the synthesis and degradation of proteins. The second problem is that memory requirements cause a practical limit to the size of systems that can be evaluated. In this paper, we discuss how these limitations can be overcome using parallel computation and methods dealing efficiently with the available memory. These methods were implemented in a parallel C++ program. We discuss two networks for which the stochastic dynamics were evaluated using this program: a single phosphorylation cycle and an oscillating MAP-kinase cascade.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苯二氮卓发布了新的文献求助10
刚刚
1秒前
Erin完成签到,获得积分10
1秒前
2秒前
楠楠小猪发布了新的文献求助10
2秒前
苏大肺雾完成签到,获得积分10
3秒前
体贴问儿发布了新的文献求助10
4秒前
机灵柚子应助xiaoruirx采纳,获得10
4秒前
5秒前
joicelee199完成签到,获得积分10
6秒前
KMYSUDA发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
Lily完成签到 ,获得积分20
9秒前
9秒前
9秒前
Haley完成签到,获得积分10
10秒前
Yjb发布了新的文献求助10
10秒前
10秒前
魁梧的盼望完成签到 ,获得积分10
10秒前
美好斓发布了新的文献求助10
12秒前
多吃香菜完成签到,获得积分10
12秒前
Tae_Hanazono完成签到,获得积分10
12秒前
阿千发布了新的文献求助10
13秒前
CodeCraft应助随性i采纳,获得10
13秒前
14秒前
14秒前
14秒前
善学以致用应助辛浩菘采纳,获得10
15秒前
香辣鸡腿堡完成签到,获得积分10
15秒前
15秒前
egg完成签到,获得积分10
15秒前
白象完成签到,获得积分20
16秒前
16秒前
bkagyin应助zSmart采纳,获得10
17秒前
康超发布了新的文献求助10
18秒前
向日葵发布了新的文献求助10
19秒前
科研通AI5应助阿千采纳,获得10
20秒前
桐桐应助zzz采纳,获得10
21秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817349
求助须知:如何正确求助?哪些是违规求助? 3360735
关于积分的说明 10409073
捐赠科研通 3078857
什么是DOI,文献DOI怎么找? 1690789
邀请新用户注册赠送积分活动 814164
科研通“疑难数据库(出版商)”最低求助积分说明 768050