One-Dimensional CNN-Based Intelligent Recognition of Vibrations in Pipeline Monitoring With DAS

Softmax函数 人工智能 计算机科学 支持向量机 特征提取 模式识别(心理学) 分类器(UML) 管道(软件) 计算 卷积神经网络 机器学习 算法 程序设计语言
作者
Huijuan Wu,Jiping Chen,Xiangrong Liu,Yao Xiao,Mengjiao Wang,Yi Zheng,Yunjiang Rao
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:37 (17): 4359-4366 被引量:225
标识
DOI:10.1109/jlt.2019.2923839
摘要

The vibration recognition along the fiber is still a challenging problem in pipeline monitoring with distributed optical-fiber acoustic sensor (DAS), because the burying environments in a wide range are complicated, and there are many different vibration sources interfering at different fiber locations, which are unpredictable and changing from time to time. Conventional machine learning methods with fixed hand-crated feature extraction are always time-consuming and laborious, and the recognition is relying heavily on expert knowledge, which has poor generalization ability. Thus, deep learning algorithms have been tried in this area. However, in this paper, it is found that one-dimensional (1-D) CNN can extract the distinguishable properties of the vibration signals of DAS with better performance and efficiency than the 2-D CNN through real field data experiments. And there are two main increment of the work: First, we try to use an efficient 1-D CNN to replace the 2-D CNN for feature extraction, which can improve the computation efficiency by directly feeding raw or the denoised data without any transformation or other manual work, and using simpler network structure; second, we optimize the classification further by replacing the softmax layer by the support vector machine (SVM) classifier, which is selected optimally from several typical classifiers, such as SVM, random forest, and extreme gradient boosting. Finally, the proposed method (1-D CNN+SVM) can achieve an average recognition accuracy of over 98% for five main classes of typical DAS signals in the oil pipeline monitoring application, which is superior to the conventional machine learning methods with fixed hand-crated feature. At the same time, both accuracy and efficiency of the method are better than those of the 2-D CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
XINGXING完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
喵喵完成签到,获得积分10
2秒前
zcs完成签到,获得积分10
2秒前
唐古拉发布了新的文献求助10
3秒前
ada关闭了ada文献求助
3秒前
3秒前
青松子发布了新的文献求助10
3秒前
禾禾发布了新的文献求助10
4秒前
Jasper应助INGRID采纳,获得10
5秒前
5秒前
安寒发布了新的文献求助10
5秒前
6秒前
DHL完成签到,获得积分10
7秒前
JohnsonTse发布了新的文献求助10
7秒前
7秒前
王博发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
wzy完成签到,获得积分10
11秒前
DHL发布了新的文献求助10
11秒前
12秒前
Owen应助刻苦的三德采纳,获得10
13秒前
青松子完成签到,获得积分10
14秒前
comput_math完成签到,获得积分10
15秒前
15秒前
风趣的凌珍完成签到,获得积分20
15秒前
李耀华发布了新的文献求助10
17秒前
刘华完成签到,获得积分20
17秒前
浮游应助天真惜天采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
浩铭发布了新的文献求助10
20秒前
20秒前
呵呵呵完成签到,获得积分10
20秒前
21秒前
李健应助科研欢采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430497
求助须知:如何正确求助?哪些是违规求助? 4543659
关于积分的说明 14188414
捐赠科研通 4461921
什么是DOI,文献DOI怎么找? 2446355
邀请新用户注册赠送积分活动 1437748
关于科研通互助平台的介绍 1414473