亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

One-Dimensional CNN-Based Intelligent Recognition of Vibrations in Pipeline Monitoring With DAS

Softmax函数 人工智能 计算机科学 支持向量机 特征提取 模式识别(心理学) 分类器(UML) 管道(软件) 计算 卷积神经网络 机器学习 算法 程序设计语言
作者
Huijuan Wu,Jiping Chen,Xiangrong Liu,Yao Xiao,Mengjiao Wang,Yi Zheng,Yunjiang Rao
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:37 (17): 4359-4366 被引量:206
标识
DOI:10.1109/jlt.2019.2923839
摘要

The vibration recognition along the fiber is still a challenging problem in pipeline monitoring with distributed optical-fiber acoustic sensor (DAS), because the burying environments in a wide range are complicated, and there are many different vibration sources interfering at different fiber locations, which are unpredictable and changing from time to time. Conventional machine learning methods with fixed hand-crated feature extraction are always time-consuming and laborious, and the recognition is relying heavily on expert knowledge, which has poor generalization ability. Thus, deep learning algorithms have been tried in this area. However, in this paper, it is found that one-dimensional (1-D) CNN can extract the distinguishable properties of the vibration signals of DAS with better performance and efficiency than the 2-D CNN through real field data experiments. And there are two main increment of the work: First, we try to use an efficient 1-D CNN to replace the 2-D CNN for feature extraction, which can improve the computation efficiency by directly feeding raw or the denoised data without any transformation or other manual work, and using simpler network structure; second, we optimize the classification further by replacing the softmax layer by the support vector machine (SVM) classifier, which is selected optimally from several typical classifiers, such as SVM, random forest, and extreme gradient boosting. Finally, the proposed method (1-D CNN+SVM) can achieve an average recognition accuracy of over 98% for five main classes of typical DAS signals in the oil pipeline monitoring application, which is superior to the conventional machine learning methods with fixed hand-crated feature. At the same time, both accuracy and efficiency of the method are better than those of the 2-D CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谷子完成签到 ,获得积分10
34秒前
珍珠火龙果完成签到 ,获得积分10
55秒前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
1分钟前
7rey发布了新的文献求助10
1分钟前
1分钟前
木心发布了新的文献求助10
1分钟前
7rey完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
萌萌麻麻应助唐泽雪穗采纳,获得40
1分钟前
萌萌麻麻应助唐泽雪穗采纳,获得40
2分钟前
2分钟前
黑摄会阿Fay完成签到,获得积分10
2分钟前
萌萌麻麻应助唐泽雪穗采纳,获得40
2分钟前
萌萌麻麻应助唐泽雪穗采纳,获得40
2分钟前
2分钟前
2分钟前
萌萌麻麻应助唐泽雪穗采纳,获得40
2分钟前
2分钟前
魔幻花卷发布了新的文献求助10
2分钟前
Raven发布了新的文献求助10
2分钟前
萌萌麻麻应助唐泽雪穗采纳,获得40
2分钟前
2分钟前
2分钟前
cheng发布了新的文献求助10
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
CodeCraft应助科研通管家采纳,获得30
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
clearsky应助科研通管家采纳,获得10
3分钟前
瘦瘦梦秋应助科研通管家采纳,获得10
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Parenchymal volume and functional recovery after clamped partial nephrectomy: potential discrepancies 300
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4682124
求助须知:如何正确求助?哪些是违规求助? 4057727
关于积分的说明 12545402
捐赠科研通 3753101
什么是DOI,文献DOI怎么找? 2072777
邀请新用户注册赠送积分活动 1101849
科研通“疑难数据库(出版商)”最低求助积分说明 981140