A wavelet frame constrained total generalized variation model for imaging conductivity distribution

Tikhonov正则化 正规化(语言学) 电阻抗断层成像 反问题 全变差去噪 小波 算法 迭代重建 计算机科学 数学优化 增广拉格朗日法 应用数学 数学 断层摄影术 数学分析 人工智能 图像(数学) 物理 光学
作者
Zhiwei Tian,Yanyan Shi,Wang Meng,Xiaolong Kong,Lei Li,Feng Fu
出处
期刊:Inverse Problems and Imaging [American Institute of Mathematical Sciences]
卷期号:16 (4): 753-753 被引量:1
标识
DOI:10.3934/ipi.2021074
摘要

<p style='text-indent:20px;'>Electrical impedance tomography (EIT) is a sensing technique with which conductivity distribution can be reconstructed. It should be mentioned that the reconstruction is a highly ill-posed inverse problem. Currently, the regularization method has been an effective approach to deal with this problem. Especially, total variation regularization method is advantageous over Tikhonov method as the edge information can be well preserved. Nevertheless, the reconstructed image shows severe staircase effect. In this work, to enhance the quality of reconstruction, a novel hybrid regularization model which combines a total generalized variation method with a wavelet frame approach (TGV-WF) is proposed. An efficient mean doubly augmented Lagrangian algorithm has been developed to solve the TGV-WF model. To demonstrate the effectiveness of the proposed method, numerical simulation and experimental validation are conducted for imaging conductivity distribution. Furthermore, some comparisons are made with typical regularization methods. From the results, it can be found that the proposed method shows better performance in the reconstruction since the edge of the inclusion can be well preserved and the staircase effect is effectively relieved.</p>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anny.white完成签到,获得积分10
1秒前
吴映波完成签到,获得积分10
1秒前
CipherSage应助Osshun采纳,获得10
2秒前
传奇3应助李李李李李采纳,获得10
2秒前
2秒前
爱学习的瑞瑞子完成签到 ,获得积分10
4秒前
4秒前
bing完成签到,获得积分10
5秒前
ryota发布了新的文献求助10
5秒前
懵懂的采梦应助研友_LBorkn采纳,获得10
7秒前
义气冰姬完成签到,获得积分10
7秒前
7秒前
少华完成签到,获得积分10
7秒前
7秒前
勤奋紫真完成签到 ,获得积分10
7秒前
啊哦发布了新的文献求助10
8秒前
zoro完成签到,获得积分10
8秒前
tuzi2160完成签到,获得积分10
9秒前
9秒前
dddddd发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
科研小虫发布了新的文献求助10
13秒前
14秒前
Isaac完成签到,获得积分10
14秒前
15秒前
voifhpg发布了新的文献求助10
16秒前
16秒前
dddddd完成签到,获得积分10
17秒前
好柿花生发布了新的文献求助10
17秒前
huang发布了新的文献求助10
18秒前
wanci应助文献达人采纳,获得10
18秒前
今后应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
冰魂应助科研通管家采纳,获得10
19秒前
19秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
Evaluation of sustainable development level for front-end cold-chain logistics of fruits and vegetables: a case study on Xinjiang, China 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828020
求助须知:如何正确求助?哪些是违规求助? 3370296
关于积分的说明 10462695
捐赠科研通 3090268
什么是DOI,文献DOI怎么找? 1700293
邀请新用户注册赠送积分活动 817810
科研通“疑难数据库(出版商)”最低求助积分说明 770442