Machine Learning and Artificial Intelligence: A Paradigm Shift in Big Data-Driven Drug Design and Discovery

人工智能 计算机科学 大数据 时间轴 药物发现 机器学习 过程(计算) 深度学习 知识抽取 领域(数学) 数据科学 数据挖掘 生物信息学 历史 操作系统 生物 数学 考古 纯数学
作者
Purvashi Pasrija,Prakash Jha,Pruthvi Upadhyaya,Mohd Shoaib Khan,Madhu Chopra
出处
期刊:Current Topics in Medicinal Chemistry [Bentham Science Publishers]
卷期号:22 (20): 1692-1727 被引量:30
标识
DOI:10.2174/1568026622666220701091339
摘要

Background: The lengthy and expensive process of developing a novel medicine often takes many years and entails a significant financial burden due to its poor success rate. Furthermore, the processing and analysis of quickly expanding massive data necessitate the use of cutting-edge methodologies. As a result, Artificial Intelligence-driven methods that have been shown to improve the efficiency and accuracy of drug discovery have grown in favor. Objective: The goal of this thorough analysis is to provide an overview of the drug discovery and development timeline, various approaches to drug design, and the use of Artificial Intelligence in many aspects of drug discovery. Methods: Traditional drug development approaches and their disadvantages have been explored in this paper, followed by an introduction to AI-based technology. Also, advanced methods used in Machine Learning and Deep Learning are examined in detail. A few examples of big data research that has transformed the field of medication discovery have also been presented. Also covered are the many databases, toolkits, and software available for constructing Artificial Intelligence/Machine Learning models, as well as some standard model evaluation parameters. Finally, recent advances and uses of Machine Learning and Deep Learning in drug discovery are thoroughly examined, along with their limitations and future potential. Conclusion: Artificial Intelligence-based technologies enhance decision-making by utilizing the abundantly available high-quality data, thereby reducing the time and cost involved in the process. We anticipate that this review would be useful to researchers interested in Artificial Intelligence-based drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗药顽完成签到,获得积分10
刚刚
lxy完成签到,获得积分20
刚刚
1秒前
123发布了新的文献求助10
1秒前
2秒前
白莆发布了新的文献求助10
3秒前
LQH完成签到,获得积分10
4秒前
沉静觅风完成签到 ,获得积分10
5秒前
清脆不斜发布了新的文献求助30
5秒前
冲冲冲啊完成签到,获得积分10
6秒前
juju完成签到,获得积分10
6秒前
迷路小丸子完成签到,获得积分10
6秒前
混世大魔王先生完成签到,获得积分10
6秒前
kiki完成签到,获得积分10
7秒前
zhuozhuo关注了科研通微信公众号
7秒前
8秒前
10秒前
Ade阿德完成签到 ,获得积分10
10秒前
GNY完成签到 ,获得积分10
11秒前
11秒前
自觉的K完成签到,获得积分10
12秒前
12秒前
8788完成签到,获得积分10
13秒前
呆萌芙蓉发布了新的文献求助10
13秒前
酒仙完成签到,获得积分10
13秒前
sasa完成签到,获得积分10
13秒前
Ran-HT完成签到,获得积分10
13秒前
喝到几点完成签到,获得积分10
13秒前
文成发布了新的文献求助10
14秒前
Lucas应助Gavin采纳,获得10
14秒前
14秒前
拉长的初彤完成签到 ,获得积分10
14秒前
卢浩完成签到,获得积分10
15秒前
科研小民工应助PPSlu采纳,获得200
15秒前
16秒前
16秒前
16秒前
wm完成签到,获得积分10
16秒前
隔岸发布了新的文献求助20
16秒前
Kate发布了新的文献求助10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792971
求助须知:如何正确求助?哪些是违规求助? 3337641
关于积分的说明 10286083
捐赠科研通 3054212
什么是DOI,文献DOI怎么找? 1675888
邀请新用户注册赠送积分活动 803875
科研通“疑难数据库(出版商)”最低求助积分说明 761578