Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

超声波传感器 声学 多普勒效应 流量(数学) 两相流 材料科学 人工神经网络 相(物质) 机械 计算机科学 物理 人工智能 量子力学 天文
作者
Baba Musa Abbagoni,Hoi Yeung
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:27 (8): 084002-084002 被引量:69
标识
DOI:10.1088/0957-0233/27/8/084002
摘要

The identification of flow pattern is key issue in multiphase flow which encountered in the petrochemical industry.Gas-liquid two-phase flow is difficult to identify the gas-liquid flow regimes objectively.This paper presents a feasibility of a clamp-on instrument for objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and artificial neural network.It is on recording and processing of the ultrasonic signals reflected from the two-phase flow.Experimental data obtained on a horizontal test rig with total pipe length of 21 m long and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes.Multilayer Perceptron Neural Networks (MLPNNs) used for developing the classification model.The classifier requires features as input which is representative of the signals.Ultrasound signal features extracted by applying both power spectral density (PSD) and discrete wavelet transforms (DWT) methods to the flow signals.A classification scheme of "1-of-C coding method for classification" was adopted to classify features extracted into one of four flow regime categories.To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using output of a first level networks features as input features.Addition of the two network models provided a combined neural network models which has achieved higher accuracy than single neural network models.Classification accuracies evaluated in the form of both the PSD and DWT features.The success rates of the two models are: (1) using PSD features, the classifier missed three datasets out of 24 test datasets of the classification and scored 87.5% accuracy.(2) With the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy.This approach has demonstrated success of a clamp-on ultrasound sensor for flow regime classification and it would be possible in industry practice.It is considerably more promising than other techniques as it uses of non-invasive and nonradioactive sensor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhou应助ztt27999采纳,获得50
刚刚
清秀的砖头完成签到,获得积分10
刚刚
1秒前
日月同辉完成签到,获得积分10
1秒前
1秒前
baozi关注了科研通微信公众号
1秒前
1秒前
爆米花应助wy采纳,获得10
1秒前
望除应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
纪梵希完成签到,获得积分10
3秒前
3秒前
孟祥磊发布了新的文献求助10
3秒前
蒸蒸日上完成签到,获得积分20
4秒前
妮妮完成签到,获得积分10
4秒前
蔚蓝绽放完成签到,获得积分10
4秒前
5秒前
潇洒自由基完成签到,获得积分10
5秒前
123完成签到,获得积分10
5秒前
李健应助大马哈鱼采纳,获得10
5秒前
5秒前
5秒前
大白不白完成签到,获得积分10
5秒前
wcy发布了新的文献求助10
6秒前
6秒前
7秒前
SYLH应助小杜小杜采纳,获得20
7秒前
星辰大海应助哈哈哈哈哈采纳,获得10
7秒前
nana发布了新的文献求助10
7秒前
kbj完成签到,获得积分10
7秒前
hjg完成签到,获得积分10
7秒前
7秒前
Alma完成签到,获得积分10
8秒前
科研通AI5应助Joy采纳,获得10
8秒前
8秒前
忠玉发布了新的文献求助10
9秒前
典雅凌蝶发布了新的文献求助10
9秒前
KYT完成签到 ,获得积分10
9秒前
9秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330567
关于积分的说明 10247380
捐赠科研通 3046041
什么是DOI,文献DOI怎么找? 1671820
邀请新用户注册赠送积分活动 800855
科研通“疑难数据库(出版商)”最低求助积分说明 759730