A few-shot U-Net deep learning model for lung cancer lesion segmentation via PET/CT imaging

深度学习 人工智能 分割 计算机科学 正电子发射断层摄影术 PET-CT 机器学习 模式识别(心理学) 放射科 医学
作者
Nicholas Ε. Protonotarios,Iason Katsamenis,Stavros Sykiotis,Νικόλαος Δικαίος,George A. Kastis,Sofia Chatziioannou,Marinos Metaxas,Nikolaos Doulamis,Anastasios Doulamis
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:8 (2): 025019-025019 被引量:37
标识
DOI:10.1088/2057-1976/ac53bd
摘要

Abstract Over the past few years, positron emission tomography/computed tomography (PET/CT) imaging for computer-aided diagnosis has received increasing attention. Supervised deep learning architectures are usually employed for the detection of abnormalities, with anatomical localization, especially in the case of CT scans. However, the main limitations of the supervised learning paradigm include (i) large amounts of data required for model training, and (ii) the assumption of fixed network weights upon training completion, implying that the performance of the model cannot be further improved after training. In order to overcome these limitations, we apply a few-shot learning (FSL) scheme. Contrary to traditional deep learning practices, in FSL the model is provided with less data during training. The model then utilizes end-user feedback after training to constantly improve its performance. We integrate FSL in a U-Net architecture for lung cancer lesion segmentation on PET/CT scans, allowing for dynamic model weight fine-tuning and resulting in an online supervised learning scheme. Constant online readjustments of the model weights according to the users’ feedback, increase the detection and classification accuracy, especially in cases where low detection performance is encountered. Our proposed method is validated on the Lung-PET-CT-DX TCIA database. PET/CT scans from 87 patients were included in the dataset and were acquired 60 minutes after intravenous 18 F-FDG injection. Experimental results indicate the superiority of our approach compared to other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粉色完成签到,获得积分10
刚刚
刚刚
CX完成签到,获得积分10
1秒前
HEAUBOOK应助朱孝培采纳,获得10
1秒前
SSDlk完成签到,获得积分10
1秒前
1秒前
1秒前
Ryan完成签到,获得积分10
2秒前
小马甲应助月饼同学采纳,获得10
3秒前
Felly完成签到 ,获得积分10
4秒前
妮妮发布了新的文献求助10
4秒前
4秒前
酷酷银耳汤完成签到,获得积分10
5秒前
阳光c完成签到 ,获得积分10
6秒前
7秒前
7秒前
林慕然2023完成签到,获得积分10
7秒前
潇洒映冬发布了新的文献求助10
8秒前
关键词完成签到,获得积分10
8秒前
七七完成签到,获得积分10
8秒前
YYY完成签到,获得积分10
8秒前
故意的书本完成签到 ,获得积分10
9秒前
龚成明完成签到,获得积分10
10秒前
10秒前
10秒前
何一非完成签到,获得积分10
11秒前
优雅的雁凡完成签到,获得积分10
11秒前
焦糖完成签到,获得积分10
12秒前
12秒前
gu发布了新的文献求助10
12秒前
12秒前
11111111111完成签到,获得积分10
13秒前
桃花依旧完成签到,获得积分10
13秒前
13秒前
月饼同学完成签到,获得积分10
13秒前
车灵波完成签到 ,获得积分10
13秒前
慕容飞凤发布了新的文献求助10
14秒前
14秒前
eterny完成签到,获得积分10
15秒前
赘婿应助djbj2022采纳,获得80
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795743
求助须知:如何正确求助?哪些是违规求助? 3340790
关于积分的说明 10301851
捐赠科研通 3057307
什么是DOI,文献DOI怎么找? 1677625
邀请新用户注册赠送积分活动 805512
科研通“疑难数据库(出版商)”最低求助积分说明 762642