Investigation of Uncertainty Changes in Model Outputs for Finite-Element Model Updating Using Structural Health Monitoring Data

有限元法 水准点(测量) 结构健康监测 不确定度量化 计算机科学 高斯过程 算法 模糊逻辑 实验数据 试验数据 替代模型 高斯分布 数学 工程类 结构工程 机器学习 统计 人工智能 量子力学 物理 大地测量学 程序设计语言 地理
作者
Yıldırım Serhat Erdoğan,Mustafa Gül,F. Necati Çatbaş,Pelin Gündeş Bakır
出处
期刊:Journal of Structural Engineering-asce [American Society of Civil Engineers]
卷期号:140 (11) 被引量:31
标识
DOI:10.1061/(asce)st.1943-541x.0001002
摘要

This article aims to investigate the effect of uncertainties on the predicted response of structures using updated finite-element models (FEMs). Modeling uncertainties are quantified by fuzzy numbers and are incorporated into the fuzzy FEM updating procedure. The impact of the amount and types of data used on the performance of the updated model is investigated. In order to perform the complex FEM updating calculations, which generally take too much time for complex models, a Gaussian process (GP) is used as a surrogate model. The central composite design (CCD) method is used to sample the input parameter space for more accurate GP models. Genetic algorithms (GA) are employed to solve the inverse fuzzy model updating problem. Additional constraints are presented to capture the variation space of the uncertain response parameters. The University of Central Florida benchmark test structure, which is designed to represent short-span to medium-span bridges, is used in the scope of uncertainty quantification study. Static and dynamic experimental test data obtained from the benchmark structure under different loadings and conditions are used for the demonstration. A damage case, in which the stiffness reduction in boundaries is simulated by using flexible pads, is considered. The results show that appropriate data sets, which contain the least uncertainty, should be generated instead of involving the entire set of measurements obtained from different tests. Nevertheless, uncertainty quantification should be employed to find the variation range of uncertain responses predicted by simplified FEM models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yang发布了新的文献求助10
刚刚
章德仁完成签到,获得积分10
2秒前
潇洒的书白完成签到,获得积分10
2秒前
阔达晓博发布了新的文献求助10
3秒前
3秒前
5秒前
摩登灰太狼完成签到,获得积分10
5秒前
Lucas应助懒羊羊采纳,获得10
5秒前
6秒前
李爱国应助科研通管家采纳,获得10
7秒前
夏来应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
夏来应助科研通管家采纳,获得10
7秒前
ZD发布了新的文献求助10
7秒前
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
hanzhipad应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得30
8秒前
科研通AI5应助miao采纳,获得10
8秒前
8秒前
8秒前
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
TM 5-855-1(Fundamentals of protective design for conventional weapons) 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826191
求助须知:如何正确求助?哪些是违规求助? 3368614
关于积分的说明 10451355
捐赠科研通 3087956
什么是DOI,文献DOI怎么找? 1698907
邀请新用户注册赠送积分活动 817190
科研通“疑难数据库(出版商)”最低求助积分说明 770065