UAV T-YOLO-Rice: An Enhanced Tiny Yolo Networks for Rice Leaves Diseases Detection in Paddy Agronomy

深度学习 水稻 计算机科学 联营 块(置换群论) 棱锥(几何) 农业工程 人工智能 农学 数学 工程类 生物 几何学
作者
Arun Kumar Sangaiah,Fan-Nong Yu,Yi‐Bing Lin,Wan-Chi Shen,Akashdeep Sharma
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:11 (6): 5201-5216 被引量:24
标识
DOI:10.1109/tnse.2024.3350640
摘要

The paddy agronomy in the Asia-pacific region has gained a prominent role in connection with the major rice production area in over the decades. The research aims to investigate the aerial computing techniques to improve the sky farming techniques. Recently, the enhancement of unmanned aerial vehicle (UAV) and Internet of Things (IoT) with Deep Learning (DL) in paddy agronomy research has ensured the impact on data availability and predictive analytics. In this research, we focus on Deep Learning (DL) for identifying weeds, regions of crop failure, and crop health in paddy crops. Therefore, a DL architecture suitable for application in aerial computing UAV onboard intelligence is necessary. Furthermore, the DL architecture should be stable and consume as few computational resources as possible, given that it is applied on the UAV's onboard system. This paper proposes to use Tiny YOLO (T-Yolo)V4 as the base detector via following modules: (a) YOLO detection layer is added to the T-YOLO v4 to make the network more capable of detecting small objects. (b) Spatial pyramid pooling (SPP), convolutional block attention module (CBAM), Sand Clock Feature Extraction Module (SCFEM), Ghost modules, and more convolutional layers are added to the network to increase the accuracy of the network. Subsequently, a rice leaf diseases data set which contains the labeled images of rice leaf diseases such as Bacterial leaf blight, Rice blast, and brown spot is obtained. In addition, the image augmentations is applied to produce more samples of the three classes to create our own rice leaf diseases data set. Finally, the enhanced UAV Tiny Yolo Rice (UAV T-yolo-Rice) network has obtained the testing mean average precision (mAP) as $86 \%$ by training the proposed rice leaves' disease data set. More experimental results reveal that our proposed method outperforms the Rice Leaves' Diseases detection model by using the proposed UAV T-yolo-Rice network set can obtain the highest testing Mean Average Precision (mAP) than all the other models from previous studies. Even the Yolo V7 model produced by darknet cannot have the testing accuracy that is higher than the proposed network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安可完成签到 ,获得积分10
1秒前
午夜时分收病人完成签到,获得积分10
1秒前
JamesPei应助早日毕业采纳,获得10
1秒前
橙子皮发布了新的文献求助10
1秒前
芒果味猕猴桃完成签到,获得积分10
2秒前
2秒前
3秒前
我是真人哈完成签到,获得积分10
3秒前
Pzuzu发布了新的文献求助10
4秒前
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
CR7应助科研通管家采纳,获得20
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
Sid应助科研通管家采纳,获得100
5秒前
5秒前
5秒前
慕青应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
6秒前
violet完成签到,获得积分10
6秒前
郝好完成签到 ,获得积分10
8秒前
8秒前
yoyo发布了新的文献求助10
8秒前
9秒前
10秒前
完美世界应助ghigh采纳,获得10
11秒前
应飞飞完成签到,获得积分10
11秒前
MQL完成签到,获得积分10
12秒前
BLAZe发布了新的文献求助10
12秒前
震动的沉鱼完成签到 ,获得积分10
13秒前
FashionBoy应助pluto采纳,获得10
14秒前
Hodge完成签到,获得积分10
14秒前
15秒前
Bruce完成签到,获得积分10
15秒前
小美最棒完成签到,获得积分10
16秒前
早日毕业发布了新的文献求助10
16秒前
小羊小羊发布了新的文献求助10
17秒前
打打应助虎啊虎啊采纳,获得10
17秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3901453
求助须知:如何正确求助?哪些是违规求助? 3446185
关于积分的说明 10843518
捐赠科研通 3171310
什么是DOI,文献DOI怎么找? 1752201
邀请新用户注册赠送积分活动 847061
科研通“疑难数据库(出版商)”最低求助积分说明 789681