已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

UAV T-YOLO-Rice: An Enhanced Tiny Yolo Networks for Rice Leaves Diseases Detection in Paddy Agronomy

深度学习 水稻 计算机科学 联营 块(置换群论) 棱锥(几何) 农业工程 人工智能 农学 数学 工程类 生物 几何学
作者
Arun Kumar Sangaiah,Fan-Nong Yu,Yi‐Bing Lin,Wan-Chi Shen,Akashdeep Sharma
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:11 (6): 5201-5216 被引量:68
标识
DOI:10.1109/tnse.2024.3350640
摘要

The paddy agronomy in the Asia-pacific region has gained a prominent role in connection with the major rice production area in over the decades. The research aims to investigate the aerial computing techniques to improve the sky farming techniques. Recently, the enhancement of unmanned aerial vehicle (UAV) and Internet of Things (IoT) with Deep Learning (DL) in paddy agronomy research has ensured the impact on data availability and predictive analytics. In this research, we focus on Deep Learning (DL) for identifying weeds, regions of crop failure, and crop health in paddy crops. Therefore, a DL architecture suitable for application in aerial computing UAV onboard intelligence is necessary. Furthermore, the DL architecture should be stable and consume as few computational resources as possible, given that it is applied on the UAV's onboard system. This paper proposes to use Tiny YOLO (T-Yolo)V4 as the base detector via following modules: (a) YOLO detection layer is added to the T-YOLO v4 to make the network more capable of detecting small objects. (b) Spatial pyramid pooling (SPP), convolutional block attention module (CBAM), Sand Clock Feature Extraction Module (SCFEM), Ghost modules, and more convolutional layers are added to the network to increase the accuracy of the network. Subsequently, a rice leaf diseases data set which contains the labeled images of rice leaf diseases such as Bacterial leaf blight, Rice blast, and brown spot is obtained. In addition, the image augmentations is applied to produce more samples of the three classes to create our own rice leaf diseases data set. Finally, the enhanced UAV Tiny Yolo Rice (UAV T-yolo-Rice) network has obtained the testing mean average precision (mAP) as $86 \%$ by training the proposed rice leaves' disease data set. More experimental results reveal that our proposed method outperforms the Rice Leaves' Diseases detection model by using the proposed UAV T-yolo-Rice network set can obtain the highest testing Mean Average Precision (mAP) than all the other models from previous studies. Even the Yolo V7 model produced by darknet cannot have the testing accuracy that is higher than the proposed network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮应助雨之夏日采纳,获得50
2秒前
传奇3应助迷路的成风采纳,获得10
2秒前
辉辉应助Amy采纳,获得10
5秒前
zheng完成签到 ,获得积分10
8秒前
8秒前
8秒前
wch666发布了新的文献求助10
13秒前
wenwj9完成签到,获得积分10
14秒前
调调单单发布了新的文献求助10
15秒前
22秒前
Amy完成签到,获得积分10
22秒前
26秒前
迷路的成风完成签到,获得积分10
27秒前
平淡诗柳完成签到 ,获得积分20
27秒前
28秒前
舒心凡完成签到,获得积分10
30秒前
Ava应助麦克采纳,获得10
30秒前
清风发布了新的文献求助10
31秒前
打打应助cai采纳,获得50
32秒前
罗罗罗发布了新的文献求助10
33秒前
wch666完成签到,获得积分10
34秒前
0717完成签到,获得积分10
35秒前
天宇南神完成签到 ,获得积分10
35秒前
Xx完成签到 ,获得积分10
37秒前
平淡诗柳发布了新的文献求助10
40秒前
梁凤炜完成签到,获得积分10
41秒前
CodeCraft应助清风采纳,获得10
41秒前
唐若冰完成签到,获得积分10
44秒前
七七完成签到 ,获得积分10
45秒前
万能图书馆应助Su采纳,获得10
57秒前
百宝驳回了Jasper应助
59秒前
eriphin完成签到,获得积分10
59秒前
打打应助渴望者采纳,获得10
1分钟前
畅快的发箍完成签到,获得积分10
1分钟前
姜姗完成签到 ,获得积分10
1分钟前
lzy完成签到,获得积分10
1分钟前
1分钟前
1分钟前
在巨人的肩膀上眺望远方完成签到,获得积分10
1分钟前
amanda完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606500
求助须知:如何正确求助?哪些是违规求助? 4690888
关于积分的说明 14866511
捐赠科研通 4706081
什么是DOI,文献DOI怎么找? 2542717
邀请新用户注册赠送积分活动 1508129
关于科研通互助平台的介绍 1472276