UAV T-YOLO-Rice: An Enhanced Tiny Yolo Networks for Rice Leaves Diseases Detection in Paddy Agronomy

深度学习 水稻 计算机科学 联营 块(置换群论) 棱锥(几何) 农业工程 人工智能 农学 数学 工程类 生物 几何学
作者
Arun Kumar Sangaiah,Fan-Nong Yu,Yi‐Bing Lin,Wan-Chi Shen,Akashdeep Sharma
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:11 (6): 5201-5216 被引量:78
标识
DOI:10.1109/tnse.2024.3350640
摘要

The paddy agronomy in the Asia-pacific region has gained a prominent role in connection with the major rice production area in over the decades. The research aims to investigate the aerial computing techniques to improve the sky farming techniques. Recently, the enhancement of unmanned aerial vehicle (UAV) and Internet of Things (IoT) with Deep Learning (DL) in paddy agronomy research has ensured the impact on data availability and predictive analytics. In this research, we focus on Deep Learning (DL) for identifying weeds, regions of crop failure, and crop health in paddy crops. Therefore, a DL architecture suitable for application in aerial computing UAV onboard intelligence is necessary. Furthermore, the DL architecture should be stable and consume as few computational resources as possible, given that it is applied on the UAV's onboard system. This paper proposes to use Tiny YOLO (T-Yolo)V4 as the base detector via following modules: (a) YOLO detection layer is added to the T-YOLO v4 to make the network more capable of detecting small objects. (b) Spatial pyramid pooling (SPP), convolutional block attention module (CBAM), Sand Clock Feature Extraction Module (SCFEM), Ghost modules, and more convolutional layers are added to the network to increase the accuracy of the network. Subsequently, a rice leaf diseases data set which contains the labeled images of rice leaf diseases such as Bacterial leaf blight, Rice blast, and brown spot is obtained. In addition, the image augmentations is applied to produce more samples of the three classes to create our own rice leaf diseases data set. Finally, the enhanced UAV Tiny Yolo Rice (UAV T-yolo-Rice) network has obtained the testing mean average precision (mAP) as $86 \%$ by training the proposed rice leaves' disease data set. More experimental results reveal that our proposed method outperforms the Rice Leaves' Diseases detection model by using the proposed UAV T-yolo-Rice network set can obtain the highest testing Mean Average Precision (mAP) than all the other models from previous studies. Even the Yolo V7 model produced by darknet cannot have the testing accuracy that is higher than the proposed network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nook完成签到,获得积分10
1秒前
9秒前
11秒前
沈清酌完成签到,获得积分10
12秒前
咯咚完成签到 ,获得积分10
13秒前
科研通AI6.2应助dl采纳,获得30
14秒前
沈清酌发布了新的文献求助10
14秒前
liuliu发布了新的文献求助10
22秒前
23秒前
23秒前
冷艳的寻冬完成签到 ,获得积分10
24秒前
机智靖柔发布了新的文献求助10
26秒前
29秒前
自然的行恶完成签到 ,获得积分10
29秒前
Fortune完成签到,获得积分10
32秒前
iyuccvbe完成签到,获得积分10
32秒前
朴实初夏完成签到 ,获得积分10
32秒前
33秒前
howl发布了新的文献求助10
35秒前
Hello应助liuliu采纳,获得10
40秒前
所所应助ylz采纳,获得50
41秒前
Running完成签到 ,获得积分10
42秒前
111完成签到 ,获得积分10
43秒前
嚯嚯嚯嚯完成签到 ,获得积分10
48秒前
liuliu发布了新的文献求助10
48秒前
yi完成签到 ,获得积分10
49秒前
fmrre完成签到,获得积分10
49秒前
fossick2010完成签到 ,获得积分10
49秒前
爆米花应助周梦蝶采纳,获得10
51秒前
李健的小迷弟应助郑女士采纳,获得10
53秒前
1分钟前
小马甲应助娜娜采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
liuliu发布了新的文献求助10
1分钟前
hsing完成签到,获得积分10
1分钟前
豆宇桫发布了新的文献求助10
1分钟前
丰富青文发布了新的文献求助30
1分钟前
森林完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868022
求助须知:如何正确求助?哪些是违规求助? 6437147
关于积分的说明 15657551
捐赠科研通 4983349
什么是DOI,文献DOI怎么找? 2687459
邀请新用户注册赠送积分活动 1630126
关于科研通互助平台的介绍 1588186