Adaptive particle swarm architecture search based on multi-level convolutions for functional brain network classification

计算机科学 粒子群优化 地图集(解剖学) 构造(python库) 建筑 人工智能 节点(物理) 数据挖掘 机器学习 艺术 古生物学 结构工程 工程类 视觉艺术 生物 程序设计语言
作者
Xingyu Wang,Junzhong Ji
标识
DOI:10.1109/bibm58861.2023.10385377
摘要

Recently, the functional brain network (FBN) classification methods based on deep neural networks (DNNs) have around a lot of scientific interest. However, these DNN architectures are manually designed by human experts through trial-and-error testing, which not only requires rich parameter tuning experience and large labor costs, but also a fixed manual architecture cannot consistently guarantee good performance across different data distributions and scenarios. To solve this problem, we propose an adaptive particle swarm architecture search method based on multi-level convolutions, which can automatically design suitable DNN architectures for various FBN classification tasks. Specifically, to effectively extract multi-level features at FBN, we construct three multi-level convolution units to form candidate architectures. These units can extract edge-level, node-level, and graph-level features respectively. The parameters of these units will be searched using the particle swarm-based NAS framework. Additionally, to alleviate the difficulty of searching in a vast search space, we propose a novel adaptive updating strategy. This strategy adaptively locks specific elements of the particle vector based on historical information and the search epochs, which can effectively search within a subset of the vast search space. We conduct systematic experiments on ABIDE I, ABIDE II, and ADHD-200 datasets with different atlases. The experimental results demonstrate that our method achieves competitive accuracies of 74.71%, 73.03%, and 74.39% on the CC200 atlas, and 71.42%, 73.91%, and 69.96% on the AAL atlas respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
FangyingTang完成签到 ,获得积分10
2秒前
wanci应助hanhan采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得20
4秒前
4秒前
天天快乐应助科研通管家采纳,获得30
4秒前
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
skikiqi完成签到,获得积分20
5秒前
6秒前
余健发布了新的文献求助10
7秒前
8秒前
9秒前
正直念柏发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
11秒前
我能行完成签到,获得积分10
11秒前
12秒前
blacksmith0发布了新的文献求助10
13秒前
Ava应助听风采纳,获得10
14秒前
bjf发布了新的文献求助10
15秒前
田様应助SHNU_YS采纳,获得10
16秒前
白桦林泪发布了新的文献求助10
17秒前
candy6663339完成签到,获得积分10
19秒前
20秒前
科研助手6应助余健采纳,获得10
20秒前
20秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802457
求助须知:如何正确求助?哪些是违规求助? 3348068
关于积分的说明 10336264
捐赠科研通 3064007
什么是DOI,文献DOI怎么找? 1682348
邀请新用户注册赠送积分活动 808052
科研通“疑难数据库(出版商)”最低求助积分说明 763997