清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Transfer Learning from Synthetic Data for SOH Estimation

计算机科学 估计 学习迁移 人工智能 机器学习 工程类 系统工程
作者
Tobias Hofmann,Matthieu Dubarry,Jacob Hamar,Simon V. Erhard,Jan Philipp Schmidt
出处
期刊:Meeting abstracts 卷期号:MA2024-02 (3): 364-364
标识
DOI:10.1149/ma2024-023364mtgabs
摘要

Public data on battery cell and battery pack aging, especially accessible from outside the automotive industry, is scarce. Scaling up from cell to pack level is not straightforward, as it requires an understanding of the underlying inhomogeneities and degradation patterns. Within the automotive industry, comprehensive time-series data on battery pack or battery electric vehicle aging is also limited due to high costs and data privacy concerns related to customer fleet data. Moreover, it is nearly impossible to capture the vast array of possible aging trajectories in controlled experiments. Such datasets, however, are essential for diagnosis and forecast of battery pack aging in the field, as well as for developing data-driven methods for state estimation. In this work, we introduce a fast, publicly available, battery pack aging data simulation toolbox based on pristine half-cell potential measurements at various C-rates. This toolbox enables the generation of constant-current charging events at different C-rates and can simulate any conceivable aging path. The modular framework allows users to adjust individual cell parameters, including state of charge (SOC), state of health (SOH), and degradation modes. Utilizing pristine half-cell potential measurements from a modern automotive lithium-ion battery, we create an initial cell model. This model, founded on the ‘alawa-toolbox [1], is validated with experimental data from a laboratory dataset. As Figure 1 illustrates, we construct a battery pack model by serially and parallelly connecting multiple cell models, incorporating intermediate resistances. This pack model reflects the configuration of a physical battery pack and permits modifications to SOC, SOH, degradation modes, and lead resistances. We collect time-series data from partial charging events of development vehicles at various aging states and use this data to calibrate our model by minimizing the discrepancy between simulated and measured voltage curves. Our model allows users to simulate and analyze the evolution of battery pack asymmetries, creating a digital twin to monitor aging impacts and identify the "weakest" cell for early damage detection and intervention. Giving every user the opportunity to generate big data from our toolbox expedites the development of data-driven SOH estimation or open-circuit voltage (OCV) reconstruction models. Future research will explore the use of synthetic data to develop state estimation algorithms applicable to various chemistries and configurations, including the analysis and validation against real customer fleet data, their battery pack aging and asymmetry patterns. Our work represents a significant advancement in facilitating access to battery and battery electric vehicle aging data, thereby reducing barriers in this research field. We anticipate that our contribution will hasten the development of data-driven methods at the battery pack level. [1] M. Dubarry, C. Truchot, B. Y. Liaw, Synthesize battery degradation modes via a diagnostic and prognostic model, Journal of Power Sources 219 (2012) 204-216, https://doi.org/10.1016/j.jpowsour.2012.07.016. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Llt驳回了小蘑菇应助
52秒前
LeoBigman完成签到 ,获得积分10
1分钟前
好运常在完成签到 ,获得积分10
1分钟前
Draymond完成签到 ,获得积分10
1分钟前
1437594843完成签到 ,获得积分10
2分钟前
neversay4ever完成签到 ,获得积分10
2分钟前
2分钟前
小西完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
鲤鱼山人完成签到 ,获得积分10
3分钟前
3分钟前
jh完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助150
3分钟前
可夫司机完成签到 ,获得积分10
3分钟前
真水无香完成签到,获得积分10
4分钟前
旺旺大礼包完成签到,获得积分10
4分钟前
creep2020完成签到,获得积分10
4分钟前
linqitc完成签到,获得积分10
5分钟前
helen李完成签到 ,获得积分10
5分钟前
科研狗完成签到 ,获得积分0
5分钟前
Zhao完成签到 ,获得积分10
5分钟前
科研通AI5应助fighting采纳,获得10
5分钟前
wangfaqing942完成签到 ,获得积分10
5分钟前
6分钟前
fighting发布了新的文献求助10
6分钟前
6分钟前
Llt发布了新的文献求助10
6分钟前
小郭完成签到 ,获得积分10
6分钟前
GPTea应助科研通管家采纳,获得20
6分钟前
GPTea应助科研通管家采纳,获得20
6分钟前
qzh006完成签到,获得积分10
7分钟前
Chavin完成签到,获得积分10
7分钟前
完美的jia完成签到,获得积分10
7分钟前
深情安青应助完美的jia采纳,获得10
7分钟前
laohei94_6完成签到 ,获得积分10
7分钟前
科研通AI5应助萱萱采纳,获得10
8分钟前
8分钟前
Llt完成签到,获得积分10
8分钟前
萱萱完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952365
求助须知:如何正确求助?哪些是违规求助? 4215092
关于积分的说明 13111197
捐赠科研通 3997017
什么是DOI,文献DOI怎么找? 2187723
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115740