Transfer Learning from Synthetic Data for SOH Estimation

计算机科学 估计 学习迁移 人工智能 机器学习 工程类 系统工程
作者
Tobias Hofmann,Matthieu Dubarry,Jacob Hamar,Simon V. Erhard,Jan Philipp Schmidt
出处
期刊:Meeting abstracts 卷期号:MA2024-02 (3): 364-364
标识
DOI:10.1149/ma2024-023364mtgabs
摘要

Public data on battery cell and battery pack aging, especially accessible from outside the automotive industry, is scarce. Scaling up from cell to pack level is not straightforward, as it requires an understanding of the underlying inhomogeneities and degradation patterns. Within the automotive industry, comprehensive time-series data on battery pack or battery electric vehicle aging is also limited due to high costs and data privacy concerns related to customer fleet data. Moreover, it is nearly impossible to capture the vast array of possible aging trajectories in controlled experiments. Such datasets, however, are essential for diagnosis and forecast of battery pack aging in the field, as well as for developing data-driven methods for state estimation. In this work, we introduce a fast, publicly available, battery pack aging data simulation toolbox based on pristine half-cell potential measurements at various C-rates. This toolbox enables the generation of constant-current charging events at different C-rates and can simulate any conceivable aging path. The modular framework allows users to adjust individual cell parameters, including state of charge (SOC), state of health (SOH), and degradation modes. Utilizing pristine half-cell potential measurements from a modern automotive lithium-ion battery, we create an initial cell model. This model, founded on the ‘alawa-toolbox [1], is validated with experimental data from a laboratory dataset. As Figure 1 illustrates, we construct a battery pack model by serially and parallelly connecting multiple cell models, incorporating intermediate resistances. This pack model reflects the configuration of a physical battery pack and permits modifications to SOC, SOH, degradation modes, and lead resistances. We collect time-series data from partial charging events of development vehicles at various aging states and use this data to calibrate our model by minimizing the discrepancy between simulated and measured voltage curves. Our model allows users to simulate and analyze the evolution of battery pack asymmetries, creating a digital twin to monitor aging impacts and identify the "weakest" cell for early damage detection and intervention. Giving every user the opportunity to generate big data from our toolbox expedites the development of data-driven SOH estimation or open-circuit voltage (OCV) reconstruction models. Future research will explore the use of synthetic data to develop state estimation algorithms applicable to various chemistries and configurations, including the analysis and validation against real customer fleet data, their battery pack aging and asymmetry patterns. Our work represents a significant advancement in facilitating access to battery and battery electric vehicle aging data, thereby reducing barriers in this research field. We anticipate that our contribution will hasten the development of data-driven methods at the battery pack level. [1] M. Dubarry, C. Truchot, B. Y. Liaw, Synthesize battery degradation modes via a diagnostic and prognostic model, Journal of Power Sources 219 (2012) 204-216, https://doi.org/10.1016/j.jpowsour.2012.07.016. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
喵喵完成签到,获得积分10
1秒前
zcs完成签到,获得积分10
1秒前
唐古拉发布了新的文献求助10
2秒前
ada关闭了ada文献求助
2秒前
2秒前
青松子发布了新的文献求助10
2秒前
禾禾发布了新的文献求助10
3秒前
Jasper应助INGRID采纳,获得10
4秒前
4秒前
安寒发布了新的文献求助10
4秒前
5秒前
DHL完成签到,获得积分10
6秒前
JohnsonTse发布了新的文献求助10
6秒前
6秒前
王博发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
wzy完成签到,获得积分10
10秒前
DHL发布了新的文献求助10
10秒前
11秒前
Owen应助刻苦的三德采纳,获得10
12秒前
青松子完成签到,获得积分10
13秒前
comput_math完成签到,获得积分10
14秒前
14秒前
风趣的凌珍完成签到,获得积分20
14秒前
李耀华发布了新的文献求助10
16秒前
刘华完成签到,获得积分20
16秒前
浮游应助天真惜天采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
浩铭发布了新的文献求助10
19秒前
19秒前
呵呵呵完成签到,获得积分10
19秒前
20秒前
李健应助科研欢采纳,获得10
20秒前
20秒前
20秒前
21秒前
wanci应助Wwww采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430497
求助须知:如何正确求助?哪些是违规求助? 4543659
关于积分的说明 14188414
捐赠科研通 4461921
什么是DOI,文献DOI怎么找? 2446355
邀请新用户注册赠送积分活动 1437748
关于科研通互助平台的介绍 1414473